首页> 外文期刊>RSC Advances >A microfluidic biochip for locally confined stimulation of cells within an epithelial monolayer
【24h】

A microfluidic biochip for locally confined stimulation of cells within an epithelial monolayer

机译:用于局部局限性刺激上皮单层内细胞的微流体生物芯片

获取原文
获取原文并翻译 | 示例
           

摘要

A key factor determining the fate of individual cells within an epithelium is the unique microenvironment that surrounds each cell. It regulates location-dependent differentiation into specific cellular sub-types, but, on the other hand, a disturbed microenvironment can promote malignant transformation of epithelial cells leading to cancer formation. Here, we present a tool based on a microfluidic biochip that enables novel research approaches by providing a means to control the basolateral microenvironment of a confined number of neighbouring cells within an epithelial monolayer. Through isolated single pores in a thin membrane carrying the epithelial cell layer only cells above the pores are stimulated by solutes. The very thin design of the biochip (<75 mu m) enabled us to apply a high-resolution inverted confocal fluorescence microscope to show by live cell imaging that such a manipulation of the microenvironment remained locally restricted to cells located above the pores. In addition, the biochip allows access for the force probe of an atomic force microscope (AFM) from the apical side to determine the topography and mechanical properties of individual cells, which we demonstrated by combined AFM and fluorescence microscopy imaging experiments. Taken together, the presented microfluidic biochip is a powerful tool that will enable studying the initial steps of malignant transformation of epithelial cells by directly manipulating their microenvironment and by real-time monitoring of affected cells with fluorescence microscopy and AFM.
机译:确定上皮内的各个细胞的命运的一个关键因素是独特微环境围绕每个单元格。它调节依赖于位置的分化成特定的细胞亚类,但是,在另一方面,被干扰的微环境可以促进上皮细胞导致癌症的形成恶变。在这里,我们提出了一种基于微流体生物芯片,使新的研究工具通过提供手段,以上皮单层内控制相邻小区的受限数目的基底外侧微环境接近。通过在薄的膜分离单细孔携带上皮细胞层仅细胞的孔上面的是由溶质刺激。生物芯片的非常薄的设计(<75微米),使我们能够施加高解析度倒置共聚焦荧光显微镜通过活细胞成像表明微环境的这种操作仍然局部限制到位于所述孔之上的细胞。此外,生物芯片允许从顶侧的原子力显微镜(AFM)的力探针来确定地形和个体细胞,其我们证实通过组合AFM和荧光显微镜成像实验的机械性质的访问。总之,所提出的微流体生物芯片是一个强大的工具,使通过直接操纵他们的微环境,并通过实时监控受影响的细胞荧光显微镜和原子力显微镜的研究上皮细胞的恶性转化的初始步骤。

著录项

  • 来源
    《RSC Advances》 |2018年第14期|共8页
  • 作者单位

    Albert Ludwigs Univ Freiburg Fac Biol Schanzlestr 1 D-79104 Freiburg Germany;

    Albert Ludwigs Univ Freiburg Fac Biol Schanzlestr 1 D-79104 Freiburg Germany;

    Albert Ludwigs Univ Freiburg Fac Biol Schanzlestr 1 D-79104 Freiburg Germany;

    Albert Ludwigs Univ Freiburg Fac Biol Schanzlestr 1 D-79104 Freiburg Germany;

    Albert Ludwigs Univ Freiburg Fac Biol Schanzlestr 1 D-79104 Freiburg Germany;

    Albert Ludwigs Univ Freiburg Fac Biol Schanzlestr 1 D-79104 Freiburg Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号