首页> 外文期刊>RSC Advances >Dual-mode response behavior of a graphene oxide implanted energetic system under different thermal stimuli
【24h】

Dual-mode response behavior of a graphene oxide implanted energetic system under different thermal stimuli

机译:不同热刺激下石墨烯植入高能系统的双模响应行为

获取原文
获取原文并翻译 | 示例
           

摘要

GO, produced by the Hummers' method and characterized by scanning electron microscopy (SEM), elemental analysis (EA), Fourier-transform infrared spectroscopy (FT-IR), Fourier-transform infrared nanospectroscopy (nano FT-IR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and simultaneous thermal analysis combined with mass spectrometry (TG-DSC-MS), was appended to boron/potassium nitrate (B/KNO3) in different proportions, to regulate the response of B/KNO3 to thermal stimuli. The addition of GO delayed the onset temperature of the reaction between B and KNO3, and brought the second reaction stage forward, however, it did not change the reaction mechanism. The integral model functions, which were in good agreement with the values calculated using the Kissinger and Ozawa method, took the form of Jander equations for three-dimensional diffusion processes. Results showing the sensitivity to flame testing demonstrated that the higher the GO content, the more insensitive the system was to temperature, which was consistent with the conclusion of the previous thermal analysis on the onset temperature of the reaction between B and KNO3. In a closed-vessel test, as the GO content increased, the pressure peak and maximum slopes of pressure-time curves increased. Under a thermal stimulus, GO was reduced to RGO, and when the stimulation was small and slow, this helped with heat dissipation and improved safety. If the stimulation was enough to ignite the energetic materials, GO contributed to the rapid attainment of the reaction temperature and sped up the reaction process.
机译:由悍马的方法生产,并通过扫描电子显微镜(SEM),元素分析(EA),傅立叶变换红外光谱(FT-IR),傅里叶变换红外纳米光谱(Nano FT-IR),X射线光电子谱(XPS),拉曼光谱和同时热分析与质谱(TG-DSC-MS)相结合,以不同的比例附加到硼/硝酸钾(B / KNO3),以调节B / KNO3的响应热刺激。延迟B延迟B和KNO3之间的反应的起始温度,并使第二反应阶段向前推动,但是,它没有改变反应机制。整体模型功能与使用基辛格和ozawa方法计算的值良好的偶然函数,采用了三维扩散过程的Jander方程的形式。结果显示对火焰测试的灵敏度表明,GO含量越高,系统对温度的不敏感,这与先前热分析对B和KNO3之间反应的开始温度的结论一致。在一个封闭的容器试验中,作为GO含量增加时,压力峰值和压力 - 时间曲线的最大斜率增加。在热刺激下,Go被降低到Rgo,当刺激小并且缓慢时,这有助于散热和改善的安全性。如果刺激足以点燃能量材料,可以促进反应温度的快速达到反应温度并加速反应过程。

著录项

  • 来源
    《RSC Advances》 |2020年第18期|共10页
  • 作者单位

    Beijing Inst Technol State Key Lab Explos Sci &

    Technol Beijing 100081 Peoples R China;

    Beijing Inst Technol State Key Lab Explos Sci &

    Technol Beijing 100081 Peoples R China;

    Beijing Inst Technol State Key Lab Explos Sci &

    Technol Beijing 100081 Peoples R China;

    Beijing Inst Technol State Key Lab Explos Sci &

    Technol Beijing 100081 Peoples R China;

    Beijing Inst Technol State Key Lab Explos Sci &

    Technol Beijing 100081 Peoples R China;

    Beijing Inst Technol State Key Lab Explos Sci &

    Technol Beijing 100081 Peoples R China;

    Beijing Inst Technol State Key Lab Explos Sci &

    Technol Beijing 100081 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号