首页> 外文期刊>RSC Advances >Theoretical study on the excited state decay properties of iron(ii) polypyridine complexes substituted by bromine and chlorine
【24h】

Theoretical study on the excited state decay properties of iron(ii) polypyridine complexes substituted by bromine and chlorine

机译:用溴和氯取代的铁(II)氯吡啶复合物激发态衰减性能的理论研究

获取原文
获取原文并翻译 | 示例
           

摘要

Transition metal iron(ii) polypyridyl complexes with quintet ground states were deeply investigated by density functional theory (DFT) and time-dependent density functional theory (TDDFT). Compared with the parent complex [Fe(tpy)(2)](2+) (tpy = 2,2 ':6 ',2 ''-terpyridine), the ground states of the complexes substituted by halogen atoms changed from singlet states to quintet states with rare high spin excited state lifetimes. The substituted complex [Fe(dbtpy)(2)](2+) (1) results in a high spin metal-ligand charge transfer lifetime of 17.4 ps, which is 1.4 ps longer than that of [Fe(dctpy)(2)](2+) (2) with the substitution of chlorine atoms. The reason for this is explored by a combination of electronic structures, absorption spectra, extended transition state coupled with natural orbitals for chemical valence (ETS-NOCV) studies and potential energy curves (PECs). The distortion of 1 in the angles and dihedrals of the ligands is slightly larger than that in 2, although the average metal-ligand bond lengths of the latter are larger. The twisted octahedron decreases the interactions between the d orbitals of iron(ii) and the n/pi orbitals of the ligands. Compared with 2, the enlarged energy gaps among the different PECs of 1 and the increased energy crossing points caused by the larger distortion result in the increase of its excited state lifetime. The different pairwise orbital interaction contributions between the metal center and the ligands in their singlet states are qualitatively estimated by ETS-NOCV. The results show that the substitution of bromine atoms will decrease the electrostatic attraction between the metal and ligands but not significantly impact the orbital interactions.
机译:通过密度泛函理论(DFT)和时间依赖性密度泛函理论(TDDFT)深入研究了与Quintet地面态的过渡金属铁(II)聚吡啶复合物。与亲本复合[Fe(TPY)(2)](2+)(TPY = 2,2':6',2'' - + 2,2':6'相比,由卤素原子取代的络合物的地面变化与罕见的高旋转激发态生命的Quintet国家。取代的复合物[Fe(DBTPY)(2)](2 +)(2+)(1)导致高旋转金属 - 配体电荷转移寿命为17.4 ps,比[Fe(DCTPY)(2)的时间长为1.4 ps ](2+)(2)取代氯原子。通过电子结构的组合,吸收光谱,延伸过渡状态与用于化学价(ETS-NOCV)研究和潜在能量曲线(PEC)的天然轨道(PEC)的组合来探索这一点的原因。尽管后者的平均金属 - 配体键长度略大,但是配体的角度和二浆料中1的变形略大于2中。扭曲的八面体会降低铁(II)的D轨道与配体的N / PI轨道之间的相互作用。与2相比,由1的不同PEC的增大能量间隙和由较大的变形引起的能量交叉点的增加导致其激发态寿命的增加。通过ETS-NOCV定性地估计金属中心与其单态中的配体之间的不同成对轨道相互作用贡献。结果表明,溴原子取代将降低金属和配体之间的静电吸引,但没有显着影响轨道相互作用。

著录项

  • 来源
    《RSC Advances》 |2019年第54期|共7页
  • 作者

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号