首页> 外文期刊>RSC Advances >Bionic anti-adhesive electrode coupled with maize leaf microstructures and TiO2 coating
【24h】

Bionic anti-adhesive electrode coupled with maize leaf microstructures and TiO2 coating

机译:仿生抗粘接电极与玉米叶片微观结构和TiO2涂层相结合

获取原文
获取原文并翻译 | 示例
           

摘要

Recently, the electrosurgical electrode used in minimally invasive surgery is becoming more and more popular as it causes only a little trauma and slight pain, and has other advantages. However, its high working temperature, above 400 degrees C, often results in serious tissue adhesion on the surface of the electrode, which seriously affects the normal operation of the surgery. In this paper, we develop a novel type of electrode with a coupled bionic anti- adhesive surface by fabricating microstructures inspired by the maize leaf and coating a thin layer of TiO2 film on it. The grid-like microstructures inspired by the maize leaf were fabricated by laser marking technology. Then, the sol-gel method was chosen to prepare the TiO2 coating. The surface characterization of the electrode substrate, bionic electrode and coupled bionic electrode was carried out after fabrication. Afterwards, the wettability and components of these were measured and analysed, respectively. Furthermore, in order to determine the adhesion behaviour of different electrodes, electric cutting experiments were performed on fresh isolated animal liver tissue in detail. Finally, the relationships between adhesion mass, cutting time and cutting depth were also measured. The results show that the coupled bionic electrode surface has the most effective anti- adhesion performance compared with the bare original electrode surface under a high temperature. The investigations carried out in this work offer a promising way to design and fabricate anti- adhesive surfaces working at higher temperatures.
机译:最近,在微创手术中使用的电外科电极变得越来越受欢迎,因为它只引起少量创伤和轻微的疼痛,并且具有其他优点。然而,其高于400摄氏度的高工作温度,通常导致电极表面上的严重组织粘附,这严重影响了手术的正常操作。在本文中,我们通过制造由玉米叶的微观结构和涂覆薄层TiO 2膜上的微观结构,开发一种具有耦合的仿生抗粘合表面的新型电极。通过激光标记技术制造了由玉米叶的引发的网格状微观结构。然后,选择溶胶 - 凝胶方法以制备TiO 2涂层。在制造后进行电极基板,仿生电极和耦合仿生电极的表面表征。然后,分别测量和分析这些润湿性和组分。此外,为了确定不同电极的粘附性能,详细地对新鲜分离的动物肝组织进行电切割实验。最后,还测量了粘附质量,切割时间和切割深度之间的关系。结果表明,与高温下的裸原始电极表面相比,耦合仿生电极表面具有最有效的抗粘合性能。本工作中进行的调查提供了一种有希望的设计和制造在较高温度下工作的抗粘性表面的方法。

著录项

  • 来源
    《RSC Advances》 |2017年第72期|共7页
  • 作者单位

    Jilin Univ Minist Educ Key Lab Bion Engn Changchun 130022 Jilin Peoples R China;

    Jilin Univ Minist Educ Key Lab Bion Engn Changchun 130022 Jilin Peoples R China;

    Jilin Univ Minist Educ Key Lab Bion Engn Changchun 130022 Jilin Peoples R China;

    Jilin Univ Minist Educ Key Lab Bion Engn Changchun 130022 Jilin Peoples R China;

    Jilin Univ Minist Educ Key Lab Bion Engn Changchun 130022 Jilin Peoples R China;

    Jilin Univ Minist Educ Key Lab Bion Engn Changchun 130022 Jilin Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号