...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >Quantifying the thickness of the electrical double layer neutralizing a planar electrode: the capacitive compactness
【24h】

Quantifying the thickness of the electrical double layer neutralizing a planar electrode: the capacitive compactness

机译:量化电气双层的厚度中和平面电极:电容紧凑性

获取原文
获取原文并翻译 | 示例
           

摘要

The spatial extension of the ionic cloud neutralizing a charged colloid or an electrode is usually characterized by the Debye length associated with the supporting charged fluid in the bulk. This spatial length arises naturally in the linear Poisson-Boltzmann theory of point charges, which is the cornerstone of the widely used Derjaguin-Landau-Verwey-Overbeek formalism describing the colloidal stability of electrified macroparticles. By definition, the Debye length is independent of important physical features of charged solutions such as the colloidal charge, electrostatic ion correlations, ionic excluded volume effects, or specific short-range interactions, just to mention a few. In order to include consistently these features to describe more accurately the thickness of the electrical double layer of an inhomogeneous charged fluid in planar geometry, we propose here the use of the capacitive compactness concept as a generalization of the compactness of the spherical electrical double layer around a small macroion (Gonzalez-Tovar et al., J. Chem. Phys. 2004, 120, 9782). To exemplify the usefulness of the capacitive compactness to characterize strongly coupled charged fluids in external electric fields, we use integral equations theory and Monte Carlo simulations to analyze the electrical properties of a model molten salt near a planar electrode. In particular, we study the electrode's charge neutralization, and the maximum inversion of the net charge per unit area of the electrode-molten salt system as a function of the ionic concentration, and the electrode's charge. The behaviour of the associated capacitive compactness is interpreted in terms of the charge neutralization capacity of the highly correlated charged fluid, which evidences a shrinking/expansion of the electrical double layer at a microscopic level. The capacitive compactness and its first two derivatives are expressed in terms of experimentally measurable macroscopic properties such as the differential and integral capacity, the electrode's surface charge density, and the mean electrostatic potential at the electrode's surface.
机译:中和带电胶体或电极的离子云的空间延伸通常是与块中的支撑带电流体相关的德细长度。这种空间长度自然地出现在线性泊松 - Boltzmann积分指控理论中,这是广泛使用的Derjaguin-Landau-Verwey-overbeek形式主义的基石,其描述了电气化的宏颗粒的胶体稳定性。根据定义,Deybe长度与带电溶液的重要身体特征无关,例如胶体电荷,静电离子相关,离子排除的体积效应或特定的短距离相互作用,只是提及少数。为了始终包括这些特征来更精确地描述平面几何形状中的非均匀带电流体的电双层的厚度,我们在此提出使用电容紧凑性概念作为球形电双层的紧凑性的概括一只小宏观(Gonzalez-tovar等,J.Chem. phys。2004,120,9782)。为了举例说明电容性紧致性的有用性,以表征外部电场中的强耦合的带电流体,我们使用整体方程理论和蒙特卡罗模拟来分析平面电极附近模型熔融盐的电性能。特别地,我们研究电极的电荷中和,以及电极熔融盐系统的每单位面积的净电荷的最大反转作为离子浓度,电极的电荷。相关电容紧凑性的行为在高度相关的带电流体的电荷中和容量方面解释,这证明了在微观水平下的电双层的收缩/膨胀。以实验可测量的宏观性质(例如差分和整体容量),电极的表面电荷密度和电极表面的平均静电电位,表达电容紧凑性及其前两个衍生物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号