首页> 外文期刊>Current Science: A Fortnightly Journal of Research >Image deconvolution research: its scope and importance in live cell microscopy
【24h】

Image deconvolution research: its scope and importance in live cell microscopy

机译:图像反卷积研究:其在活细胞显微镜中的范围和重要性

获取原文
获取原文并翻译 | 示例
           

摘要

Fluorescence microscopy has become an indispensable tool in cell biology research due its exceptional specificity and ability to visualize subcellular structures with high contrast. It has highest impact when applied in 4D mode, i.e. when applied to record 3D image information as a function of time, since it allows the study of dynamic cellular processes in their native environment. The main issue in 4D fluorescence microscopy is that the phototoxic effect of fluorescence excitation gets accumulated during 4D image acquisition to the extent that normal cell functions are altered. Hence to avoid the alteration of normal cell functioning, it is required to minimize the excitation dose used for individual 2D images constituting a 4D image. Consequently, the noise level becomes very high degrading the resolution. According to the current status of technology, there is a minimum required excitation dose to ensure a resolution that is adequate for biological investigations. This minimum is sufficient to damage light-sensitive cells such as yeast if 4D imaging is performed for an extended period of time, for example, imaging for a complete cell cycle. Nevertheless, our recently developed deconvolution method resolves this conflict forming an enabling technology for visualization of dynamical processes of light-sensitive cells for durations longer than ever without perturbing normal cell functioning. The main goal of this article is to emphasize that there are still possibilities for enabling newer kinds of experiment in cell biology research involving even longer 4D imaging, by only improving deconvolution methods without any new optical technologies.
机译:荧光显微镜已成为细胞生物学研究中不可或缺的工具,因为它具有非凡的特异性和以高对比度可视化亚细胞结构的能力。当它应用于4D模式时,即应用于记录3D图像信息作为时间的函数时,它具有最大的影响,因为它允许研究其原始环境中的动态细胞过程。 4D荧光显微镜的主要问题是,在4D图像采集过程中,荧光激发的光毒性效应会累积到正常细胞功能发生改变的程度。因此,为了避免正常细胞功能的改变,需要最小化用于构成4D图像的各个2D图像的激发剂量。因此,噪声水平变得很高,从而降低了分辨率。根据当前的技术状况,有一个最低要求的激发剂量,以确保足够用于生物学研究的分辨率。如果长时间进行4D成像(例如,整个细胞周期的成像),则此最小值足以损坏光敏细胞(例如酵母)。尽管如此,我们最近开发的反卷积方法解决了这种冲突,形成了一种使可视化光敏细胞动态过程可视化的使能技术,其持续时间比以往更长,并且不会干扰正常的细胞功能。本文的主要目的是强调,仅通过改进反卷积方法而无需任何新的光学技术,仍有可能进行涉及更长的4D成像的细胞生物学研究中的新型实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号