...
首页> 外文期刊>Physics of plasmas >Relativistic laser driven electron accelerator using micro-channel plasma targets
【24h】

Relativistic laser driven electron accelerator using micro-channel plasma targets

机译:相对论激光驱动的电子加速器使用微通道等离子体靶标

获取原文
获取原文并翻译 | 示例
           

摘要

We present an experimental demonstration of the efficient acceleration of electrons beyond 60 MeV using micro-channel plasma targets. We employed a high-contrast, 2.5J, 32 fs short pulse laser interacting with a 5 mu m inner diameter, 300 mu m long micro-channel plasma target. The micro-channel was aligned to be collinear with the incident laser pulse, confining the majority of the laser energy within the channel. The measured electron spectrum showed a large increase in the cut-off energy and slope ternperature when compared to that from a 2 mu m flat Copper target, with the cutoff energy more than doubled and the total energy in electrons >5 MeV enhanced by over 10 times. Three-dimensional particle-in-cell simulations confirm efficient direct laser acceleration enabled by the novel structure as the dominant acceleration mechanism for the high energy electrons. The simulations further reveal the guiding effect of the channel that successfully explains preferential acceleration on the laser/channel axis observed in experiments. Finally, systematic simulations provide scalings for the energy and charge of the electron pulses. Our results show that the micro-channel plasma target is a promising electron source for applications such as ion acceleration, Bremsstrahlung X-ray radiation, and THZ generation.
机译:我们使用微通道等离子体靶来介绍超出60 mev超出60 mev的高效加速的实验证明。我们采用高对比度,2.5J,32 FS短脉冲激光器与5μm内径,300μm长的微通道等离子体靶相互作用。微通道与入射激光脉冲对齐,与入射激光脉冲相连,将大部分激光能量限制在通道内。与2μm扁平铜靶相比,测量的电子光谱显示出截止能量和斜坡卧式的大幅增加,截止能量大于一倍多,电电子中的总能量> 5 mev增强超过10时代。三维粒子内仿真通过新颖的结构实现了高效的直接激光加速作为高能量电子的主导加速机制。该模拟进一步揭示了成功解释了在实验中观察到的激光/通道轴上的优先加速的信道的引导效应。最后,系统模拟为电子脉冲的能量和充电提供缩放。我们的结果表明,微通道等离子体靶是用于离子加速,Bremsstrahlung X射线辐射和第三发电的应用的有前途的电子源。

著录项

  • 来源
    《Physics of plasmas》 |2019年第3期|共8页
  • 作者单位

    Miami Univ Dept Math &

    Phys Sci Hamilton OH 45011 USA;

    Chinese Acad Sci Shanghai Inst Opt &

    Fine Mech State Key Lab High Field Laser Phys Shanghai 201800 Peoples R China;

    Innovat Sci Solut Inc Dayton OH 45459 USA;

    Ohio State Univ Dept Phys 174 W 18th Ave Columbus OH 43210 USA;

    Lawrence Livermore Natl Lab Livermore CA 94550 USA;

    Ohio State Univ Dept Phys 174 W 18th Ave Columbus OH 43210 USA;

    Lawrence Livermore Natl Lab Livermore CA 94550 USA;

    Voss Sci Albuquerque NM 87108 USA;

    Lawrence Livermore Natl Lab Livermore CA 94550 USA;

    Ohio State Univ Dept Phys 174 W 18th Ave Columbus OH 43210 USA;

    Ohio State Univ Dept Phys 174 W 18th Ave Columbus OH 43210 USA;

    Ohio State Univ Dept Phys 174 W 18th Ave Columbus OH 43210 USA;

    Chinese Acad Sci Shanghai Inst Opt &

    Fine Mech State Key Lab High Field Laser Phys Shanghai 201800 Peoples R China;

    Ohio State Univ Dept Phys 174 W 18th Ave Columbus OH 43210 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 等离子体物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号