...
【24h】

Fundamentals of fast-scan cyclic voltammetry for dopamine detection

机译:快速扫描循环伏安法对多巴胺检测的基础

获取原文
获取原文并翻译 | 示例
           

摘要

Fast-scan cyclic voltammetry (FSCV) is used with carbon-fiber microelectrodes for the real-time detection of neurotransmitters on the subsecond time scale. With FSCV, the potential is ramped up from a holding potential to a switching potential and back, usually at a 400 V s~(-1) scan rate and a frequency of 10 Hz. The plot of current vs. applied potential, the cyclic voltammogram (CV), has a very different shape for FSCV than for traditional cyclic voltammetry collected at scan rates which are 1000-fold slower. Here, we explore the theory of FSCV, with a focus on dopamine detection. First, we examine the shape of the CVs. Background currents, which are 100-fold higher than faradaic currents, are subtracted out. Peak separation is primarily due to slow electron transfer kinetics, while the symmetrical peak shape is due to exhaustive electrolysis of all the adsorbed neurotransmitters. Second, we explain the origins of the dopamine waveform, and the factors that limit the holding potential (oxygen reduction), switching potential (water oxidation), scan rate (electrode instability), and repetition rate (adsorption). Third, we discuss data analysis, from data visualization with color plots, to the automated algorithms like principal components regression that distinguish dopamine from pH changes. Finally, newer applications are discussed, including optimization of waveforms for analyte selectivity, carbon nanomaterial electrodes that trap dopamine, and basal level measurements that facilitate neurotransmitter measurements on a longer time scale. FSCV theory is complex, but understanding it enables better development of new techniques to monitor neurotransmitters in vivo.
机译:快速扫描循环伏安法(FSCV)与碳纤维微电极一起使用,用于实时检测亚群时间规模的神经递质。利用FSCV,电位从保持电位升温到切换电位和后退,通常以400V S〜(-1)扫描速率和10Hz的频率。电流与施加电位,循环伏安图(CV)的曲线图具有比在扫描速率上收集的传统循环伏安法的FSCV非常不同的形状,这是1000倍的速度。在这里,我们探讨了FSCV的理论,重点是多巴胺检测。首先,我们检查CVS的形状。减去比法拉迪电流高100倍的背景电流。峰值分离主要是由于慢电子转移动力学,而对称峰值形状是由于所有吸附的神经递质的详尽电解。其次,我们解释了多巴胺波形的起源,以及限制保持电位(氧气还原),切换电位(水氧化),扫描速率(电极不稳定)和重复率(吸附)的因素。第三,我们讨论数据分析,从数据可视化与颜色图中,以与pH变化区分多巴胺的主要成分回归等自动化算法。最后,讨论了更新的应用,包括用于分析物选择性的波形的优化,捕获多巴胺的碳纳米材料电极,以及促进较长时间尺度的神经递质测量的基础水平测量。 FSCV理论很复杂,但了解它可以更好地开发新技术,以监测体内神经递质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号