...
【24h】

Machine Learning for Absorption Cross Sections

机译:吸收横截面的机器学习

获取原文
获取原文并翻译 | 示例
           

摘要

We present a machine learning (ML) method to accelerate the nuclear ensemble approach (NEA) for computing absorption cross sections. ML-NEA is used to calculate cross sections on vast ensembles of nuclear geometries to reduce the error due to insufficient statistical sampling. The electronic properties-excitation energies and oscillator strengths-are calculated with a reference electronic structure method only for a relatively few points in the ensemble. The KREG model (kernel-ridge-regression-based ML combined with the RE descriptor) as implemented in MLatom is used to predict these properties for the remaining tens of thousands of points in the ensemble without incurring much of additional computational cost. We demonstrate for two examples, benzene and a 9-dicyanomethylene derivative of acridine, that ML-NEA can produce statistically converged cross sections even for very challenging cases and even with as few as several hundreds of training points.
机译:我们提出了一种机器学习(ML)方法,以加速计算吸收横截面的核融合方法(NEA)。 ML-NEA用于计算核几何集的广泛系列上的横截面,以减少由于统计采样不足而导致的误差。 电子性能 - 激励能量和振荡器强度 - 用仅用于集合中相对较少的点的参考电子结构方法计算。 MLATOM中实现的Kreg模型(基于RECRESSION的基于REGROSERION的ML)用于预测集合中剩余数万点的这些属性,而不会产生大部分额外的计算成本。 我们证明了吖啶的两个实例,苯和9-二氯甲基衍生物,即使对于非常具有挑战性的情况,ML-NEA也可以产生统计融合的横截面,甚至与几百次训练点一样少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号