...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Insights into the Electrochemical Oxygen Evolution Reaction with ab Initio Calculations and Microkinetic Modeling: Beyond the Limiting Potential Volcano
【24h】

Insights into the Electrochemical Oxygen Evolution Reaction with ab Initio Calculations and Microkinetic Modeling: Beyond the Limiting Potential Volcano

机译:与AB Initio计算和微急性建模的电化学氧气进化反应的见解:超越限制潜在的火山

获取原文
获取原文并翻译 | 示例
           

摘要

Density functional theory calculations are potentially useful for both understanding the activity of experimentally tested catalysts and screening for new catalyst materials. For electrochemical oxygen evolution reaction (OER) catalysts, these analyses are usually performed considering only the thermodynamics of the reaction path, which typically consists of adsorbed OH*, O*, and OOH*. Scaling relationships between the stability of these intermediates lead to a limiting potential volcano whose optimum is constrained by the roughly constant offset between the binding energies of OH* and OOH*. In this work, we evaluate OER kinetics at rutile IrO2, RuO2, RhO2 , and PtO2 surfaces by computing reaction barriers with an explicit model of the electrochemical interface. We conclude that the kinetics of proton transfer between oxygen atoms at the surface and in the electrolyte is facile and that O-O bond formation is most likely rate-determining in all cases. Combining these results with a microkinetic model and a scaling relationship for the OOH* formation barrier, we construct a new activity volcano whose optimum is similar to that of the limiting potential volcano for typical current densities. This kinetic volcano is also shown to agree reasonably well with experimental observations. Based on this analysis, we propose a more precise requirement for improving OER catalysts beyond the state of the art: the transition state for OOH* formation must be stabilized as opposed to the fully formed OOH* final state as has been previously presumed.
机译:密度函数理论计算潜在可用于理解实验测试催化剂的活性和用于新型催化剂材料的筛选。对于电化学氧量反应(OER)催化剂,通常仅考虑反应路径的热力学进行这些分析,其通常由吸附的OH *,O *和OOH *组成。这些中间体的稳定性之间的缩放关系导致限制电位火山,其最佳受阻受OH *和OOH *的结合能之间的大致恒定偏移。在这项工作中,我们通过用电化学界面的明确模型计算反应屏障,评估金红石IRO2,RUO2,RHO2和PTO2表面的OER动力学。我们得出结论,在表面和电解质中的氧原子之间的质子转移的动力学是容易的,并且O-O键形成在所有情况下最有可能测定速率。将这些结果与微酮模型相结合和对OOH *形成屏障的缩放关系,建立一个新的活动火山,其最佳的气体类似于限制电流密度的限制潜在火山。这种动力学火山也与实验观察结果相加。基于该分析,我们提出了一种更精确的要求,改善超出现有技术的OER催化剂:必须稳定OOH *形成的过渡状态,而不是完全形成的OOH *最终状态,如前所述。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号