...
首页> 外文期刊>Dalton transactions: An international journal of inorganic chemistry >How feasible is the reversible S-dissociation mechanism for the activation of FeMo-co, the catalytic site of nitrogenase?
【24h】

How feasible is the reversible S-dissociation mechanism for the activation of FeMo-co, the catalytic site of nitrogenase?

机译:可行的是可逆的S-解离机制,用于激活股骨CO,氢酶的催化位点?

获取原文
获取原文并翻译 | 示例
           

摘要

The active site of the enzyme nitrogenase (N-2 NH3) is a Fe7MoS9C cluster that contains three doubly-bridging -S atoms around a central belt. A vanadium nitrogenase variant has a slightly different cluster, containing two -S atoms. Recent crystal structures have revealed substitution of one -S (S2B, bridging Fe2 and Fe6), by CO in Mo-nitrogenase and an uncertain light atom in V-nitrogenase. These systems retained catalytic activity, and were able to recover the lost -S atom. Electron density attributed to the dissociated S is displaced by 7 angstrom in the crystal structure of the non-standard V-protein. The hypothesis arising from these observations is that the chemical mechanism of nitrogenase involves reversible dissociation of S2B, leaving Fe2 and Fe6 seriously under-coordinated and reactive in trapping N-2 and binding reaction intermediates. Accumulated experimental evidence points to the Fe2-S2B-Fe6 domain as the centre of catalytic hydrogenation of N-2. Using DFT simulations of a large model (488 atoms) containing all relevant surrounding protein residues, I have investigated the chemical steps that could allow dissociation of S2B. The participation of H atoms is crucial, as is involvement of the nearby side chain of His195 that can function as proton donor to S2B and hydrogen-bonding supporter of displaced S2B. A significant result is that after ingress and binding of N-2 at Fe2 the breaking of the Fe2-S2B bond can be strongly exergonic with negligible kinetic barrier. Subsequent extension of the Fe6-S2B bond and dissociation as H2S (or SH-) is endergonic by 20-25 kcal mol(-1), partly because the separating H2S is restricted by surrounding amino-acids. I present a number of reaction sequences and energy landscapes, and derive thirteen chemical principles relevant to the postulated S-dissociation mechanism. A key conclusion is that unhooking of S2BH or S2BH(2) from Fe2 is favourable, likely, and propitious for subsequent H transfer to bound N-2 or reactio
机译:酶氮酶的活性位点(N-2 NH 3)是Fe7MOS9C簇,其围绕中心带含有三个双桥接原子。钒硝酸酯变体具有略微不同的簇,含有两个原子原子。最近的晶体结构揭示了在Mo-unitogenase中的CO和V-氮酶中的不确定光原子取代单(S2B,桥接Fe2和Fe6)。这些系统保留了催化活性,并且能够回收丢失的原子。归因于离解的S的电子密度在非标准V-蛋白的晶体结构中置换7埃。由这些观察结果产生的假设是氮酶的化学机制涉及S2B的可逆解离,在捕获N-2和结合反应中间体时严重地欠下和反应的Fe2和Fe6。累积的实验证据指向Fe2-S2B-Fe6结构域作为N-2的催化氢化中心。使用含有所有相关周围蛋白质残留物的大型模型(& 488原子)的DFT模拟,我研究了可以允许解离S2B的化学步骤。 H原子的参与至关重要,与他195的附近侧链的参与一样,可以用作质子供体至S2B和移位的S2B的氢键配子。显着的结果是,在Fe2处的N-2的进入和结合后,Fe2-S2B键的破碎可以强烈地具有可忽略的动力学屏障。作为H 2 S(或SH-)的Fe 6-S2B键和解离的后续延伸,通过20-25kcal(-1),部分地是因为分离的H 2被周围氨基酸限制。我呈现了许多反应序列和能量景观,并导出与假设的S-解离机制相关的十三个化学原理。关键的结论是从Fe2中脱离S2BH或S2BH(2)是有利的,可能和有利于随后的H转移到结合的N-2或反应

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号