...
首页> 外文期刊>Journal of chromatography, A: Including electrophoresis and other separation methods >Electrokinetic biased deterministic lateral displacement: scaling analysis and simulations
【24h】

Electrokinetic biased deterministic lateral displacement: scaling analysis and simulations

机译:电动偏置确定性横向位移:缩放分析和模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Deterministic Lateral Displacement (DLD) is a microfluidic technique where arrays of micropillars within a microchannel deflect particles leading to size-based segregation. We recently demonstrated that applying AC electric fields orthogonal to the fluid flow increases the separation capabilities of these devices with a deflection angle that depends on the electric field magnitude and frequency. Particle deviation occurs in two distinct regimes depending on frequency. At high frequencies particles deviate due to negative dielectrophoresis (DEP). At low frequencies (below 1 kHz) particles oscillate perpendicular to the flow direction due to electrophoresis and are also deflected within the device. Significantly, the threshold electric field magnitude for the low frequency deviation is much lower than for deflection at high frequencies by DEP. In order to characterize the enhanced separation at low frequencies, the induced deviation was compared between the two frequency ranges. For high frequencies, we develop both theoretically and experimentally scaling laws for the dependence of particle deviation on several parameters, namely the amplitude of the applied voltage, particle size and liquid velocity where DEP forces compete with viscous drag. A novel theoretical framework is presented that enables simulation of particle trajectories subjected to DEP forces in DLD devices. Deviation angles predicted by simulations are in very good agreement with experimental data. At low frequencies (below 1 kHz), particles follow the same scaling law, but with much lower voltages. This indicates that electrokinetic phenomena other than DEP play an important role in driving particle behaviour. Experiments show that at low frequencies, particle motion is affected by quadrupolar electrohydrodynamic flows around the insulating pillars of the DLD array. We quantify the difference between the two frequency regimes and show that an electrokinetic model based only on DEP forces is limited to frequencies of 1 kHz and above. (C) 2020 Elsevier B.V. All rights reserved.
机译:确定性横向位移(DLD)是一种微流体技术,其中微通道偏转颗粒内的微储物阵列导致基于尺寸的偏析。我们最近证明,应用于流体流的AC电场增加了这些装置的分离能力,其具有取决于电场幅度和频率的偏转角。根据频率,在两个不同的制度中发生粒子偏差。在高频率下颗粒由于负电泳(DEP)偏离。在低频(低于1 kHz)粒子下,由于电泳,垂直于流动方向振荡,并且在装置内也偏转。值得注意的是,低频偏差的阈值电场幅度远低于DEP的高频下的偏转。为了在低频下表征增强的分离,在两个频率范围之间比较了感应偏差。对于高频,我们在理论上和实验上进行实验缩放规律,用于粒子偏差对若干参数的依赖性,即施加的电压,粒度和液体速度的幅度,其中Dep力与粘性阻力竞争。提出了一种新颖的理论框架,使得能够模拟DLD器件中的DEP力的粒子轨迹。通过模拟预测的偏差角度与实验数据非常好。在低频(低于1 kHz)时,粒子遵循相同的缩放法,但电压低得多。这表明除Dep以外的电动现象在驱动粒子行为方面发挥着重要作用。实验表明,在低频下,粒子运动受到DLD阵列的绝缘柱周围的四极电流流动的影响。我们量化仅基于DEP力的电动模型被限制到1千赫以上的频率的两个频率制度和显示之间的差异。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号