首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >The dual-function sacrificing template directed formation of MoS2/C hybrid nanotubes enabling highly stable and ultrafast sodium storage
【24h】

The dual-function sacrificing template directed formation of MoS2/C hybrid nanotubes enabling highly stable and ultrafast sodium storage

机译:MOS2 / C杂交纳米管的双函数牺牲模板定向形成,使高稳定和超快钠储存

获取原文
获取原文并翻译 | 示例
           

摘要

The constantly increasing demand for energy has forced an unprecedented desire for the utilization of sustainable energy resources due to the arousal of environmental concerns derived from the overconsumption of fossil fuels; this has drastically stimulated the development of advanced energy storage systems. Recently, sodium-ion based energy storage devices, including sodium-ion batteries (SIBs) and hybrid capacitors (NIHCs), have aroused a tremendous amount of attention, since these devices could potentially address the unaffordable cost of lithium-ion batteries (LIBs) as a power supply for large-scale grid-level applications. Currently, the common challenge related to sodium-ion based energy storage devices is the lack of appropriate anode candidates with ultrafast yet ultrastable sodium storage capabilities because of the sluggish kinetics and relatively larger radius of Na+ (1.02 angstrom) compared to Li+ (0.67 angstrom). Herein, a unique dual-function sacrificing template directed strategy has been developed for the construction of MoS2/carbon hybrid nanotubes (denoted MoS2/C-HNTs) with a strong coupling effect, which can be further extended to the synthesis of WS2/C-HNTs, Mo0.5W0.5S2/C-HNTs and MoSSe/C-HNTs with slight modifications. MoS2/C-HNTs exhibit extraordinary sodium storage performance in terms of high specific capacity, superior rate performance and ultralong cycle life. More importantly, sodium-ion based hybrid capacitors (NIHCs) with a MoS2/C-HNT anode and a commercial activated carbon (AC) cathode deliver a maximum energy density of 107.2 W h kg(-1) at a power density of 198 W kg(-1) and exhibit excellent cycling stability with 74.4% capacity retention after 5000 cycles at a high current density of 2 A g(-1). This demonstrates the highly promising application of this material as a candidate anode for sodium-ion based energy storage devices.
机译:对能源的需求不断增加,迫使对可持续能源的利用了前所未有的愿望由于化石燃料的过度衍生的环境问题的觉醒;这极大地刺激了先进的能量存储系统的发展。近年来,基于钠离子能量存储设备,包括钠离子电池(SIBS)和混合电容器(NIHCs),已引起人们关注的巨大量,因为这些装置可以潜在地解决锂离子电池的负担不起的成本(LIBS)作为大型电网级应用中的电源。目前,相对于Li +的与基于钠离子的能量储存装置的共同挑战是因为呆滞动力学的超快尚未超存储钠能力和相对较大的Na +(1.02埃)的半径缺乏适当的阳极候选(0.67埃) 。在本文中,一种独特的双功能牺牲模板定向策略已经被开发用于二硫化钼/碳混合纳米管(表示为二硫化钼/ C-HNTS)具有较强的耦合效应的结构,其可被进一步扩展到WS2 / C-合成HNTS,Mo0.5W0.5S2 / C-HNTS和莫斯/ C-HNTS略有修改。二硫化钼/ C-HNTS表现出的高的比容量,优异的倍率性能和超长循环寿命方面非凡存储钠性能。更重要的是,钠离子基混合电容器(NIHCs)与二硫化钼/ C-HNT阳极和市售活性炭(AC)阴极递送107.2 W时千克(-1)的功率198 W的密度的最大能量密度公斤(-1),并表现出在将2克(-1)的高电流密度与5000次循环后74.4%的容量保持率优异的循环稳定性。这表明该材料的大有希望的应用程序作为一个候选阳极为钠离子基的储能装置。

著录项

  • 来源
  • 作者单位

    Univ Sci &

    Technol China Hefei Natl Lab Phys Sci Microscale CAS Key Lab Mat Energy Convers Dept Mat Sci &

    Engn Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Hefei Natl Lab Phys Sci Microscale CAS Key Lab Mat Energy Convers Dept Mat Sci &

    Engn Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Hefei Natl Lab Phys Sci Microscale CAS Key Lab Mat Energy Convers Dept Mat Sci &

    Engn Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Hefei Natl Lab Phys Sci Microscale CAS Key Lab Mat Energy Convers Dept Mat Sci &

    Engn Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Hefei Natl Lab Phys Sci Microscale CAS Key Lab Mat Energy Convers Dept Mat Sci &

    Engn Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Hefei Natl Lab Phys Sci Microscale CAS Key Lab Mat Energy Convers Dept Mat Sci &

    Engn Hefei 230026 Anhui Peoples R China;

    Liaocheng Univ Dept Chem &

    Chem Engn Liaocheng 252059 Shandong Peoples R China;

    Univ Sci &

    Technol China Hefei Natl Lab Phys Sci Microscale CAS Key Lab Mat Energy Convers Dept Mat Sci &

    Engn Hefei 230026 Anhui Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号