...
首页> 外文期刊>Journal of Physics, D. Applied Physics: A Europhysics Journal >Analysis of peristaltic waves and their role in migrating Physarum plasmodia
【24h】

Analysis of peristaltic waves and their role in migrating Physarum plasmodia

机译:蠕动波及其在迁移疟原虫疟原虫中的作用分析

获取原文
获取原文并翻译 | 示例
           

摘要

The true slime mold Physarum polycephalum exhibits a vast array of sophisticated manipulations of its intracellular cytoplasm. Growing microplasmodia of Physarum have been observed to adopt an elongated tadpole shape, then contract in a rhythmic, traveling wave pattern that resembles peristaltic pumping. This contraction drives a fast flow of non-gelated cytoplasm along the cell longitudinal axis. It has been hypothesized that this flow of cytoplasm is a driving factor in generating motility of the plasmodium. In this work, we use two different mathematical models to investigate how peristaltic pumping within Physarum may be used to drive cellular motility. We compare the relative phase of flow and deformation waves predicted by both models to similar phase data collected from in vivo experiments using Physarum plasmodia. The first is a PDE model based on a dimensional reduction of peristaltic pumping within a finite length chamber. The second is a more sophisticated computational model which accounts for more general shape changes, more complex cellular mechanics, and dynamically modulated adhesion to the underlying substrate. This model allows us to directly compute cell crawling speed. Both models suggest that a mechanical asymmetry in the cell is required to reproduce the experimental observations. Such a mechanical asymmetry is also shown to increase the potential for cellular migration, as measured by both stress generation and migration velocity.
机译:真正的粘菌多头绒泡菌表现出其细胞内细胞质的复杂的操作的繁多。绒泡的生长microplasmodia已经观察到采用细长形状蝌蚪,然后在有节奏的合同,行波图案类似于蠕动泵送。这种收缩驱动器的非凝胶化的细胞质的沿着电池纵向轴线的快速流动。它已经假设,细胞质的这种流动是在产生疟原虫的运动的驱动因素。在这项工作中,我们使用两种不同的数学模型来研究如何多头绒泡菌内蠕动泵送可以用来驱动细胞运动。我们比较由两个模型从使用绒泡疟原虫的体内实验中收集类似的相位数据预测流量和变形波的相对相位。第一种是基于有限长度室内的降维蠕动泵送的PDE模型。第二个是占更一般的形状的变化,更复杂的细胞力学和动态调制粘附于底层衬底更复杂的计算模型。这种模式让我们能够直接计算细胞爬行速度。这两个模型表明,在细胞中的机械不对称性是必需的重现实验观察。这样的机械不对称还示出,以增加细胞迁移的可能性,如通过应力产生和迁移速度下测量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号