首页> 外文期刊>Acta biomaterialia >Biocompatibility and chemical reaction kinetics of injectable, settable polyurethane/allograft bone biocomposites
【24h】

Biocompatibility and chemical reaction kinetics of injectable, settable polyurethane/allograft bone biocomposites

机译:可注射的,可固化的聚氨酯/同种异体骨生物复合材料的生物相容性和化学反应动力学

获取原文
获取原文并翻译 | 示例
           

摘要

Injectable and settable bone grafts offer significant advantages over pre-formed implants due to their ability to be administered using minimally invasive techniques and to conform to the shape of the defect. However, injectable biomaterials present biocompatibility challenges due to the potential toxicity and ultimate fate of reactive components that are not incorporated in the final cured product. In this study the effects of stoichiometry and triethylenediamine (TEDA) catalyst concentration on the reactivity, injectability, and biocompatibility of two component lysine-derived polyurethane (PUR) biocomposites were investigated. Rate constants were measured for the reactions of water (a blowing agent resulting in the generation of pores), polyester triol, dipropylene glycol (DPG), and allograft bone particles with the isocyanate-terminated prepolymer using an in situ attenuated total reflection Fourier transform infrared spectroscopy technique. Based on the measured rate constants, a kinetic model predicting the conversion of each component with time was developed. Despite the fact that TEDA is a well-known urethane gelling catalyst, it was found to preferentially catalyze the blowing reaction with water relative to the gelling reactions by a ratio >17:1. Thus the kinetic model predicted that the prepolymer and water proceeded to full conversion, while the conversions of polyester triol and DPG were <70% after 24 h, which was consistent with leaching experiments showing that only non-cytotoxic polyester triol and DPG were released from the reactive PUR at early time points. The PUR biocomposite supported cellular infiltration and remodeling in femoral condyle defects in rabbits at 8 weeks, and there was no evidence of an adverse inflammatory response induced by unreacted components from the biocomposite or degradation products from the cured polymer. Taken together, these data underscore the utility of the kinetic model in predicting the biocompatibility of reactive biomaterials.
机译:可注射且可固定的骨移植物具有预成型植入物的显着优势,因为它们具有使用微创技术进行给药并符合缺损形状的能力。然而,由于未掺入最终固化产物中的反应性组分的潜在毒性和最终命运,可注射生物材料提出了生物相容性挑战。在这项研究中,研究了化学计量和三亚乙基二胺(TEDA)催化剂浓度对两组分赖氨酸衍生的聚氨酯(PUR)生物复合材料的反应性,可注射性和生物相容性的影响。使用原位衰减全反射傅立叶变换红外光谱仪测量水(发泡剂,导致产生孔),聚酯三醇,二丙二醇(DPG)和同种异体骨颗粒与异氰酸酯封端的预聚物反应的速率常数。光谱技术。基于测得的速率常数,建立了预测各组分随时间转化的动力学模型。尽管TEDA是众所周知的氨基甲酸酯胶凝催化剂,但发现它相对于胶凝反应的比例优先以> 17:1的比例催化水的发泡反应。因此,动力学模型预测,预聚物和水将进行完全转化,而聚酯三醇和DPG的转化率在24小时后<70%,这与浸出实验一致,后者表明只有无细胞毒性的聚酯三醇和DPG才从中释放出来。在早期时间点进行反应性PUR。 PUR生物复合材料在8周时支持兔股骨dy缺损中的细胞浸润和重塑,并且没有证据表明生物复合物中未反应的成分或固化聚合物的降解产物引起了不良的炎症反应。总之,这些数据强调了动力学模型在预测反应性生物材料的生物相容性方面的实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号