首页> 外文期刊>Acta biomaterialia >Mechanical properties and structure of the biological multilayered material system, Atractosteus spatula scales
【24h】

Mechanical properties and structure of the biological multilayered material system, Atractosteus spatula scales

机译:生物多层材料系统的机械特性和结构,白术刮刀鳞片

获取原文
获取原文并翻译 | 示例
           

摘要

During recent decades, research on biological systems such as abalone shell and fish armor has revealed that these biological systems employ carefully arranged hierarchical multilayered structures to achieve properties of high strength, high ductility and light weight. Knowledge of such structures may enable pathways to design bio-inspired materials for various applications. This study was conducted to investigate the spatial distribution of structure, chemical composition and mechanical properties in mineralized fish scales of the species Atractosteus spatula. Microindentation tests were conducted, and cracking patterns and damage sites in the scales were examined to investigate the underlying protective mechanisms of fish scales under impact and penetration loads. A difference in nanomechanical properties was observed, with a thinner, stiffer and harder outer layer (indentation modulus ??69 GPa and hardness ??3.3 GPa) on a more compliant and thicker inner layer (indentation modulus ??14.3 GPa and hardness ??0.5 GPa). High-resolution scanning electron microscopy imaging of a fracture surface revealed that the outer layer contained oriented nanorods embedded in a matrix, and that the nanostructure of the inner layer contained fiber-like structures organized in a complex layered pattern. Damage patterns formed during microindentation show complex deformation mechanisms. Images of cracks identify growth through the outer layer, then deflection along the interface before growing and arresting in the inner layer. High-magnification images of the crack tip in the inner layer show void-linking and fiber-bridging exhibiting inelastic behavior. The observed difference in mechanical properties and unique nanostructures of different layers may have contributed to the resistance of fish scales to failure by impact and penetration loading.
机译:在最近的几十年中,对诸如鲍鱼壳和鱼甲等生物系统的研究表明,这些生物系统采用精心安排的分层多层结构来实现高强度,高延展性和轻质的特性。对此类结构的了解可以使途径为各种应用设计生物灵感材料。进行这项研究是为了研究白术种类的矿化鱼鳞的结构,化学成分和机械性能的空间分布。进行了微压痕测试,并检查了鱼鳞的开裂模式和损伤部位,以研究鱼鳞在冲击和穿透载荷下的潜在保护机制。观察到纳米机械性能的差异,外层更薄,更硬,更硬(压痕模量≥69GPa和硬度≥3.3GPa),而内层的顺应性更厚(压痕模量≥14.3GPa和硬度≥25GPa)。 0.5 GPa)。断裂表面的高分辨率扫描电子显微镜成像显示,外层包含嵌入基质中的定向纳米棒,内层的纳米结构包含以复杂分层模式组织的纤维状结构。微压痕过程中形成的损伤模式显示出复杂的变形机制。裂纹图像识别出通过外层的生长,然后沿着界面偏转,然后在内层中生长并停滞。内层裂纹尖端的高放大倍数图像显示出空洞连接和纤维桥接,表现出非弹性行为。观察到的机械性能差异和不同层的独特纳米结构的差异可能有助于鱼鳞抵抗冲击和穿透载荷的破坏。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号