首页> 外文期刊>Acta biomaterialia >A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts.
【24h】

A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts.

机译:一种双层弹性体支架,用于小直径血管移植物的组织工程。

获取原文
获取原文并翻译 | 示例
           

摘要

A major barrier to the development of a clinically useful small diameter tissue engineered vascular graft (TEVG) is the scaffold component. Scaffold requirements include matching the mechanical and structural properties with those of native vessels and optimizing the microenvironment to foster cell integration, adhesion and growth. We have developed a small diameter, bilayered, biodegradable, elastomeric scaffold based on a synthetic, biodegradable elastomer. The scaffold incorporates a highly porous inner layer, allowing cell integration and growth, and an external, fibrous reinforcing layer deposited by electrospinning. Scaffold morphology and mechanical properties were assessed, quantified and compared with those of native vessels. Scaffolds were then seeded with adult stem cells using a rotational vacuum seeding device to obtain a TEVG, cultured under dynamic conditions for 7 days and evaluated for cellularity. The scaffold showed firm integration of the two polymeric layers with no delamination. Mechanical properties were physiologically consistent, showing anisotropy, an elastic modulus (1.4 + or - 0.4 MPa) and an ultimate tensile stress (8.3 + or - 1.7 MPa) comparable with native vessels. The compliance and suture retention forces were 4.6 + or - 0.5 x 10(-4) mmHg(-1) and 3.4 + or - 0.3N, respectively. Seeding resulted in a rapid, uniform, bulk integration of cells, with a seeding efficiency of 92 + or - 1%. The scaffolds maintained a high level of cellular density throughout dynamic culture. This approach, combining artery-like mechanical properties and a rapid and efficient cellularization, might contribute to the future clinical translation of TEVGs.
机译:支架组件是临床上有用的小直径组织工程血管移植物(TEVG)发展的主要障碍。支架要求包括使机械和结构特性与天然血管匹配,并优化微环境以促进细胞整合,粘附和生长。我们已经开发了一种基于合成的,可生物降解的弹性体的小直径,双层,可生物降解的弹性体支架。该支架包含一个高度多孔的内层,可实现细胞整合和生长,以及一个通过电纺丝沉积的外部纤维状增强层。对支架的形态和力学性能进行了评估,量化,并与天然血管进行了比较。然后使用旋转真空接种装置将支架与成人干细胞一起接种以获得TEVG,将其在动态条件下培养7天并评估其细胞性。支架显示两个聚合物层牢固整合,没有分层。机械性能在生理上是一致的,表现出与天然血管相当的各向异性,弹性模量(1.4 +或-0.4 MPa)和极限拉伸应力(8.3 +或-1.7 MPa)。顺应性和缝线保持力分别为4.6 +或-0.5 x 10(-4)mmHg(-1)和3.4 +或-0.3N。播种导致细胞快速,均匀,整体整合,播种效率为92 +或-1%。在整个动态培养过程中,支架保持高水平的细胞密度。这种方法结合了类似动脉的机械特性和快速有效的细胞化作用,可能有助于TEVG的未来临床翻译。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号