首页> 外文期刊>Acta biomaterialia >Cellular response of preosteoblasts to nanograined/ultrafine-grained structures.
【24h】

Cellular response of preosteoblasts to nanograined/ultrafine-grained structures.

机译:前成骨细胞对纳米/超细结构的细胞响应。

获取原文
获取原文并翻译 | 示例
           

摘要

Metallic materials with submicron- to nanometer-sized grains provide surfaces that are different from conventional polycrystalline materials because of the large proportion of grain boundaries with high free energy. In the study described here, the combination of cellular and molecular biology, materials science and engineering advances our understanding of cell-substrate interactions, especially the cellular activity between preosteoblasts and nanostructured metallic surfaces. Experiments on the effect of nano-/ultrafine grains have shown that cell attachment, proliferation, viability, morphology and spread are favorably modulated and significantly different from conventional coarse-grained structures. Additionally, immunofluorescence studies demonstrated stronger vinculin signals associated with actin stress fibers in the outer regions of the cells and cellular extensions on nanograined/ultrafine-grained substrate. These observations suggest enhanced cell-substrate interaction and activity. The differences in the cellular response on nanograined/ultrafine-grained and coarse-grained substrates are attributed to grain size and degree of hydrophilicity. The outcomes of the study are expected to reduce challenges to engineer bulk nanostructured materials with specific physical and surface properties for medical devices with improved cellular attachment and response. The data lay the foundation for a new branch of nanostructured materials for biomedical applications.
机译:具有亚微米级至纳米级晶粒的金属材料提供的表面与常规多晶材料不同,这是因为具有高自由能的晶界比例很大。在这里描述的研究中,细胞生物学和分子生物学,材料科学和工程学的结合提高了我们对细胞-基质相互作用的理解,尤其是成骨细胞和纳米结构金属表面之间的细胞活性。对纳米/超细晶粒的影响的实验表明,细胞附着,增殖,生存力,形态和扩散受到良好的调节,并且与常规的粗粒结构显着不同。此外,免疫荧光研究表明,与细胞外部区域中的肌动蛋白应激纤维和纳米颗粒/超细颗粒底物上的细胞延伸相关的更强的纽蛋白信号。这些观察结果表明增强的细胞-底物相互作用和活性。纳米颗粒/超细颗粒和粗颗粒基质上细胞反应的差异归因于晶粒尺寸和亲水性程度。预期该研究的结果将减少为具有改善的细胞附着和反应能力的医疗设备设计具有特定物理和表面特性的块状纳米结构材料的挑战。数据为生物医学应用纳米结构材料的新分支奠定了基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号