首页> 外文期刊>Acta biomaterialia >A lightweight, biological structure with tailored stiffness: The feather vane
【24h】

A lightweight, biological structure with tailored stiffness: The feather vane

机译:轻巧的生物结构,具有定制的刚度:羽毛叶片

获取原文
获取原文并翻译 | 示例
           

摘要

The flying feathers of birds are keratinous appendages designed for maximum performance with a minimum weight penalty. Thus, their design contains ingenious combinations of components that optimize lift, stiffness, aerodynamics, and damage resistance. This design involves two main parts: a central shaft that prescribes stiffness and lateral vanes which allows for the capture of air. Within the feather vane, barbs branch from the shaft and barbules branch from barbs, forming a flat surface which ensures lift. Microhooks at the end of barbules hold barbs tightly together, providing the close-knit, unified structure of the feather vane and enabling a repair of the structure through the reattachment of un-hooked junctions. Both the shaft and barbs are lightweight biological structures constructed of keratin using the common motif of a solid shell and cellular interior. The cellular core increases the resistance to buckling with little added weight. Here we analyze the detailed structure of the feather barb and, for the first time, explain its flexural stiffness in terms of the mechanics of asymmetric foam-filled beams subjected to bending. The results are correlated and validated with finite element modeling. We compare the flexure of single barbs as well as arrays of barbs and find that the interlocking adherence of barbs to one another enables a more robust structure due to minimized barb rotation during deflection. Thus, the flexure behavior of the feather vane can be tailored by the adhesive hooking between barbs, creating a system that mitigates damage. A simplified three-dimensional physical model for this interlocking mechanism is constructed by additive manufacturing. The exceptional architecture of the feather vane will motivate the design of bioinspired structures with tailored and unique properties ranging from adhesives to aerospace materials.
机译:鸟类的飞羽是角质附肢,旨在以最小的重量损失实现最佳性能。因此,他们的设计包含巧妙的组件组合,可以优化升力,刚度,空气动力学和抗破坏性。该设计包括两个主要部分:规定刚性的中心轴和允许空气捕获的侧向叶片。在羽毛叶片内,倒钩从竖井分支,倒钩从倒钩分支,形成一个确保升力的平坦表面。叶片末端的微钩将倒钩紧密地固定在一起,从而提供羽毛叶片的紧密编织的统一结构,并通过重新连接未钩住的连接点来修复结构。竖井和倒钩都是轻质的生物结构,由角蛋白构成,并使用了坚固的外壳和细胞内部的常见图案。蜂窝芯增加了很小的重量就增加了抗屈曲的能力。在这里,我们分析羽毛倒钩的详细结构,并首次根据受弯的非对称泡沫填充梁的力学原理来解释其弯曲刚度。结果与有限元建模相关并得到验证。我们比较了单个倒钩以及一系列倒钩的挠曲,发现倒钩彼此互锁,使得偏转过程中倒钩旋转最小,从而使结构更加坚固。因此,可以通过倒钩之间的粘合剂钩来调整羽毛叶片的挠曲行为,从而创建减轻损坏的系统。通过增材制造为该互锁机构简化了三维物理模型。羽毛叶片的非凡结构将激发生物启发性结构的设计,这些结构具有量身定制的独特特性,从粘合剂到航空航天材料,应有尽有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号