首页> 外文期刊>Acta biomaterialia >Mathematical model of mechanical behavior of microanofibrous materials designed for extracellular matrix substitutes.
【24h】

Mathematical model of mechanical behavior of microanofibrous materials designed for extracellular matrix substitutes.

机译:设计用于细胞外基质替代物的微/纳米纤维材料力学行为的数学模型。

获取原文
获取原文并翻译 | 示例
           

摘要

Electrospun microanofibrous biomaterials are widely used as extracellular matrix substitutes in tissue engineering applications because of their structural and mechanical properties. To explore the influence of microstructure on the mechanical behavior of fibrous material, a mathematical model of the fiber system was developed. The model describes the microstructural properties of a fibrous matrix using a probability density function, and enables study of their mechanical properties. The results from the mathematical model were validated by qualitative comparison with the experimental results of mechanical testing of polystyrene electrospun nanofibrous materials. The analyses show a trend of three-phase load-displacement behavior. Initially, as an increasing number of fibers are recruited for load bearing, the load-displacement curve has a 'J'-shaped toe region, which is followed by a nearly linear load-displacement curve, in which the number of load-bearing fibers remains nearly steady. Finally, there is a phase when the load-displacement curve descends, indicating failure of the material. The increase in flexibility of the fibrous material makes it stronger, but the randomness of fiber orientation makes the fibrous structure more flexible at the cost of lower strength. The measured mechanical properties of a fibrous matrix were also observed to be dependent on sample size. Therefore, the analyses establish a clear link between the structure and strength of fibrous materials for optimized design and fabrication of fibrous biomaterials with targeted use in tissue engineering, regenerative medicine and drug delivery. The model also establishes a need for standardization of experimental protocols for mechanical characterization of fibrous materials for consistency.
机译:电纺微/纳米纤维生物材料因其结构和机械性能而广泛用作组织工程应用中的细胞外基质替代物。为了探索微观结构对纤维材料力学性能的影响,建立了纤维系统的数学模型。该模型使用概率密度函数描述了纤维基质的微观结构性质,并能够研究其机械性质。通过定性与聚苯乙烯电纺纳米纤维材料力学测试的实验结果进行定性比较,验证了该数学模型的结果。分析显示了三相负荷-位移行为的趋势。最初,随着越来越多的纤维被吸收用于承载,承载位移曲线具有“ J”形脚趾区域,其后是几乎线性的承载位移曲线,其中承载纤维的数量保持稳定。最终,当载荷-位移曲线下降时存在一个阶段,表明材料发生了故障。纤维材料的柔韧性的增加使其更坚固,但是纤维取向的随机性使纤维结构更柔韧性,但代价是强度较低。还观察到纤维基体的测量机械性能取决于样品量。因此,这些分析在纤维材料的结构和强度之间建立了明确的联系,以优化纤维生物材料的设计和制造,并有针对性地用于组织工程,再生医学和药物输送。该模型还建立了对用于纤维材料机械特性一致性的实验协议进行标准化的需求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号