首页> 外文期刊>RSC Advances >Engineering-scale superlubricity of the fingerprint-like carbon films based on high power pulsed plasma enhanced chemical vapor deposition
【24h】

Engineering-scale superlubricity of the fingerprint-like carbon films based on high power pulsed plasma enhanced chemical vapor deposition

机译:基于高功率脉冲等离子体增强化学气相沉积的指纹状碳膜的工程尺寸超级润滑性

获取原文
获取原文并翻译 | 示例
           

摘要

It has been a great challenge to achieve superlubricity on an engineering scale. In this study, macro superlubricity was realized by fingerprint-like carbon (FP-C:H) films that were prepared by a high power pulsed plasma enhanced chemical vapor deposition technique. The macro superlubricity occurred under a wide range of test conditions, with a super low friction coefficient of 0.0016 in dry air. The unique structure and properties of the graphene layers made it capable not only to lower the shearing stress but also efficiently achieve superlubricity, following reorganization mechanics. High-resolution transmission electron microscopy (HRTEM) and Raman spectroscopy revealed the nanostructure evolution of the wear debris. Surprisingly, a kind of multistorey graphene nanoparticles were generated in the wear debris and the humidity played an important role in the formation of these particles. Moreover, the nanostructures of these particles directly affected the friction coefficients at different humidity values. It can be demonstrated that the graphene nanoparticles were the major reason for the super lubrication of fingerprint-like carbon films, achieving incommensurate and rolling contacts. An engineering applicable method combined with the unique superlubricity properties of fingerprint-like carbon could offer an exciting opportunity to realize long-sought applications in vehicles, turbines, and manufacturing equipment.
机译:在工程规模上实现超级润滑性一直是一个巨大的挑战。在该研究中,通过由高功率脉冲等离子体增强的化学气相沉积技术制备的指纹状碳(FP-C:H)薄膜来实现宏观超级润滑性。在多种测试条件下发生宏观超级润滑性,在干燥空气中具有0.0016的超低摩擦系数。石墨烯层的独特结构和性质使得在重组力学之后不仅能够降低剪切应力,而且有效地实现超级润滑性。高分辨率透射电子显微镜(HRTEM)和拉曼光谱揭示了磨损碎片的纳米结构演变。令人惊讶的是,在磨损碎片中产生一种多体石墨烯纳米颗粒,湿度在形成这些颗粒的形成中起重要作用。此外,这些颗粒的纳米结构直接影响了不同湿度值的摩擦系数。可以证明石墨烯纳米粒子是定指纹状碳膜的超级润滑的主要原因,实现不称称和滚动触点。一种工程适用方法与指纹状碳的独特超润滑性相结合,可以为在车辆,涡轮机和制造设备中实现长寻求应用的令人兴奋的机会。

著录项

  • 来源
    《RSC Advances》 |2016年第116期|共9页
  • 作者单位

    Chinese Acad Sci Lanzhou Inst Chem Phys State Key Lab Solid Lubricat Lanzhou 730000 Peoples R China;

    Chinese Acad Sci Lanzhou Inst Chem Phys State Key Lab Solid Lubricat Lanzhou 730000 Peoples R China;

    Chinese Acad Sci Lanzhou Inst Chem Phys State Key Lab Solid Lubricat Lanzhou 730000 Peoples R China;

    Chinese Acad Sci Lanzhou Inst Chem Phys State Key Lab Solid Lubricat Lanzhou 730000 Peoples R China;

    Chinese Acad Sci Lanzhou Inst Chem Phys State Key Lab Solid Lubricat Lanzhou 730000 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号