首页> 外文期刊>RSC Advances >Modeling and optimization of a continuous bead milling process for bacterial cell lysis using response surface methodology
【24h】

Modeling and optimization of a continuous bead milling process for bacterial cell lysis using response surface methodology

机译:使用响应表面方法的细菌细胞裂解连续珠粒研磨过程的建模与优化

获取原文
获取原文并翻译 | 示例
           

摘要

Efficient cell lysis for intracellular protein recovery is a major bottleneck in the economics and commercial feasibility of any biotechnological process. Grinding of cells with abrasive beads, also known as bead milling remains a method of choice, as it can handle a large volume of cells. Bead mills when operated in a continuous mode substantiate to be economical, and more productive as compared to a batch mode process. In this study, the recovery of recombinant cholesterol oxidase (COD) was investigated and optimized using response surface methodology (RSM) based on Central Composite Design (CCD) in a continuous bead milling process. Process parameters, viz. slurry feed rate (A), bead loading (B), cell loading (C) and process time (D) were found to be significant during the continuous bead milling process. A polynomial model was developed to correlate the participating factors for efficient cell disruption. Optimized conditions yielded 3.20 g L-1 (similar to 90%) of COD with A = 300.6 mL h(-1), B = 77.5% (v/v), C = 69.9 (OD600 nm) and D = 29.7 (min), when compared to existing batch mode operations (3.56 g L-1). This is the very first study that attempts to optimize a continuous bead milling process using RSM to maximize the intracellular protein (COD in this case) recovery with minimum inputs to make the process economical and scalable to industrial levels. The developed model in this study can be scaled-up to large-scale for efficient recovery of intracellular proteins in similar expression systems.
机译:用于细胞内蛋白质回收的高效细胞裂解是任何生物技术过程的经济学和商业可行性的主要瓶颈。用磨料珠粒研磨细胞,也称为珠粒铣削仍然是一种选择方法,因为它可以处理大量的细胞。与批次模式过程相比,珠米磨机以连续模式操作实质,并且与批次模式工艺相比是经济的,更高效的。在该研究中,使用基于连续珠粒研磨方法的中央复合设计(CCD),研究并优化了重组胆固醇氧化酶(COD)的回收率和优化。过程参数,viz。在连续珠粒铣削过程中发现浆料进料速率(A),珠子加载(B),细胞负载(C)和工艺时间(D)是显着的。开发了多项式模型以将参与因素与有效的细胞破坏相关联。优化的条件产生3.20g L-1(类似于90%)COd,A = 300.6ml H(-1),B = 77.5%(v / v),c = 69.9(OD600nm)和d = 29.7(min ),与现有批处理模式操作相比(3.56克L-1)相比。这是第一个研究,尝试使用RSM最大化细胞内蛋白(COD在这种情况下)具有最小的输入恢复使该过程经济和可扩展到工业水平优化连续珠研磨过程。该研究中的开发模型可以缩放到类似的表达系统中细胞内蛋白的高度缩小。

著录项

  • 来源
    《RSC Advances》 |2016年第20期|共10页
  • 作者单位

    Jamia Millia Islamia Dept Biosci New Delhi 110025 India;

    Univ Hail Coll Appl Med Sci Dept Clin Nutr Hail 2440 Saudi Arabia;

    Jazan Univ Coll Nursing &

    Allied Hlth Sci Res &

    Sci Studies Unit Jazan 45142 Saudi Arabia;

    Jazan Univ Coll Nursing &

    Allied Hlth Sci Res &

    Sci Studies Unit Jazan 45142 Saudi Arabia;

    Univ KwaZulu Natal Sch Hlth Sci Catalysis &

    Peptide Res Unit ZA-4041 Durban South Africa;

    Jazan Univ Coll Nursing &

    Allied Hlth Sci Res &

    Sci Studies Unit Jazan 45142 Saudi Arabia;

    Amity Univ Amity Inst Biotechnol Noida 201311 India;

    Jazan Univ Coll Nursing &

    Allied Hlth Sci Res &

    Sci Studies Unit Jazan 45142 Saudi Arabia;

    Jazan Univ Coll Nursing &

    Allied Hlth Sci Res &

    Sci Studies Unit Jazan 45142 Saudi Arabia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号