首页> 外文期刊>Acta biomaterialia >Design of imperfectly amphipathic α-helical antimicrobial peptides with enhanced cell selectivity
【24h】

Design of imperfectly amphipathic α-helical antimicrobial peptides with enhanced cell selectivity

机译:具有细胞选择性增强的不完全两亲性α-螺旋抗菌肽的设计

获取原文
获取原文并翻译 | 示例
           

摘要

Antimicrobial peptides (AMPs), which are produced by multicellular organisms as a defense mechanism against competing pathogenic microbes, appear to be excellent candidates for the development of novel antimicrobial agents. Amphipathicity is traditionally believed to be crucial to the de novo design or systematic optimization of AMPs. In this study, we designed a series of short α-helical AMPs with imperfect amphipathicity to augment the arsenal of strategies and to gain further insights into their antimicrobial and hemolytic activity. These imperfectly amphipathic α-helical AMPs were designed by replacing the paired charged amino acid residues on the polar face of an amphipathic peptide with tryptophan residues on the basis of α-helical protein folding principles. PRW4, an imperfectly amphipathic α-helical AMP with hydrogen bonds formed by paired tryptophan residues, was observed to be more selective towards bacterial cells than toward human red blood cells. PRW4 was also effective against Gram-negative and Gram-positive bacteria, and fluorescence spectroscopy, flow cytometry, scanning electron microscopy and transmission electron microscopy indicated that PRW4 killed microbial cells by permeabilizing the cell membrane and damaging their membrane integrity. Therefore, disruptive amphipathicity has excellent potential for the rational design and optimization of AMPs with promising antimicrobial activities.
机译:由多细胞生物体产生的抗菌肽(AMP)作为对抗竞争性病原微生物的防御机制,似乎是开发新型抗菌剂的极佳候选者。传统上,两亲性被认为对于AMP的从头设计或系统优化至关重要。在这项研究中,我们设计了一系列具有不完美两亲性的短α-螺旋AMP,以增强策略的作用范围,并进一步了解其抗菌和溶血活性。这些不完美的两亲性α-螺旋AMPs是根据α-螺旋蛋白折叠原理,通过色氨酸残基替换两亲性肽极性面上的成对带电氨基酸残基而设计的。观察到PRW4是一种不完全的两亲性α-螺旋AMP,具有由成对的色氨酸残基形成的氢键,它对细菌细胞的选择性比对人红细胞的选择性高。 PRW4对革兰氏阴性菌和革兰氏阳性菌也有效,荧光光谱,流式细胞仪,扫描电子显微镜和透射电子显微镜表明PRW4通过透化细胞膜并破坏其膜完整性杀死了微生物细胞。因此,破坏性两亲性具有合理的设计和优化具有希望的抗菌活性的AMP的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号