...
首页> 外文期刊>Biomaterials Science >3D biofabrication of microfiber-laden minispheroids: a facile 3D cell co-culturing system
【24h】

3D biofabrication of microfiber-laden minispheroids: a facile 3D cell co-culturing system

机译:Microfiber-Laden Minisloids的3D生物制造:一个容易3D细胞共同培养系统

获取原文
获取原文并翻译 | 示例
           

摘要

Hierarchical tissues composed of spheroid and fiber structures such as tumors, embryos and glomeruli widely exist in organisms. Methods have been developed to build spheroid and fiber structures, independently, as tissue models in vitro. However, it is still a challenge to print them simultaneously and integrated for effectively mimicking the complicated situations in vivo. Here, we propose a novel 3D cell co-culturing system, "microfiber-laden minispheroid", applying two fluidic phenomena, namely the "rope coiling effect" and "electrohydrodynamics", with a co-axial bioprinting nozzle and high voltage system. Gelatin methacryloyl (GelMA) hydrogels were extruded from the outer nozzle and separated by electrical attraction to form spheroids (similar to 1800 mu m). GelMA mixed with sodium alginate was extruded from the inner nozzle to form fibers (similar to 180 mu m) inside spheroids, whose morphology could be controlled by the ratio of inner and outer nozzle extruding flow rates. We analyzed the fabrication process and the material system in detail, verifying the fabrication feasibility and suitable microenvironment. The encapsulated cells possessed high viabilities. Importantly, the actin of human umbilical vein endothelial cells tended to elongate towards the co-cultured tumor cells, in contrast to the HUVECs cultured alone. We believe that "microfiber-laden minispheroids" could be a potential system for 3D cell co-culturing research in the future.
机译:由肿瘤,胚胎和肾小球等球体和纤维结构组成的分层组织广泛存在于生物体中。已经开发了一种独立地构建球状纤和纤维结构作为体外组织模型的方法。然而,同时打印它们仍然是一个挑战,并集成以有效地模仿体内复杂的情况。在这里,我们提出了一种新型的3D细胞共同培养系统,“Microfiber-Laden Minisbloid”,施用两个流体现象,即“绳索卷绕效应”和“电液动力学”,具有共轴向生物印刷喷嘴和高压系统。从外喷嘴挤出明胶甲基丙烯酰(GELMA)水凝胶,并通过电吸引分离,形成球状体(类似于1800μm)。将凝胶混合与海藻酸钠混合,从内喷嘴挤出,形成纤维(类似于180μm)的球状体内,其形态可以通过内部和外喷嘴挤出流量的比率来控制。我们详细分析了制造工艺和材料系统,验证了制造可行性和合适的微环境。封装的细胞具有高的可活力。重要的是,人脐静脉内皮细胞的肌动蛋白倾向于伸展朝向共培养的肿瘤细胞,与单独培养的HUVECS相反。我们认为“Microfiber-Laden Minisbheroids”可能是未来3D细胞共同培养研究的潜在系统。

著录项

  • 来源
    《Biomaterials Science》 |2020年第1期|共9页
  • 作者单位

    Zhejiang Univ State Key Lab Fluid Power &

    Mechatron Syst Sch Mech Engn Hangzhou 310027 Peoples R China;

    Zhejiang Univ State Key Lab Fluid Power &

    Mechatron Syst Sch Mech Engn Hangzhou 310027 Peoples R China;

    Zhejiang Univ State Key Lab Fluid Power &

    Mechatron Syst Sch Mech Engn Hangzhou 310027 Peoples R China;

    Zhejiang Univ State Key Lab Fluid Power &

    Mechatron Syst Sch Mech Engn Hangzhou 310027 Peoples R China;

    Zhejiang Univ State Key Lab Fluid Power &

    Mechatron Syst Sch Mech Engn Hangzhou 310027 Peoples R China;

    Zhejiang Univ State Key Lab Fluid Power &

    Mechatron Syst Sch Mech Engn Hangzhou 310027 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号