...
首页> 外文期刊>Biophysical Chemistry: An International Journal Devoted to the Physical Chemistry of Biological Phenomena >Thermodynamic properties of aqueous osmolyte solutions at high-pressure conditions
【24h】

Thermodynamic properties of aqueous osmolyte solutions at high-pressure conditions

机译:高压条件下渗透液水解溶液的热力学性质

获取原文
获取原文并翻译 | 示例
           

摘要

Living organisms can be encountered in nature under extreme conditions. At the seabed, pressure may reach 1000 bar. Yet microorganisms can be found that still function under these conditions. On the one hand, it is known that high pressure even has a positive effect on piezophile enzymes increasing their activity. On the other hand, such microorganisms might contain up to very high concentrations of osmolytes that counteract osmotic stress. To better understand high-pressure influences on biochemical systems, fundamental knowledge about pressure effects on thermodynamic properties of such osmolytes is important. However, literature data is scarce and experiments at high-pressure conditions are challenging. Hence, new high-pressure density data of aqueous osmolyte solutions were measured in this work at temperatures between 298.15 K and 318.15 K and at osmolyte concentrations up to 3 mol/kg water. Further, the thermodynamic model PC-SAFT has been applied recently to successfully model vapor pressures of water and density of water up to 10 kbar [M. Knierbein et al., Density variations of TMAO solutions in the kilobar range: experiments, PC-SAFT predictions, and molecular dynamics simulations, Biophysical chemistry, (2019)]. This allowed accurately predicting effects of temperature and osmolyte concentration on thermodynamic properties (especially mixture densities) up to very high pressures. Common osmolytes (trimethylamine-N-oxide, urea, ectoine, glycerol, glycine) as well as the dipeptides acetyl-N-methylglycine amide, acetyl-N-methylalanine amide, and acetyl-N-methylleucine amide were under investigation.
机译:在极端条件下,可以在自然界中遇到生物体。在海底,压力可能达到1000巴。然而,可以发现微生物仍然在这些条件下起作用。一方面,已知高压甚至对压制酶的积极作用增加了增加它们的活性。另一方面,这种微生物可能含有高浓度的渗透渗透渗透浓度的渗透压。为了更好地了解对生物化学系统的高压影响,关于这种渗透物的热力学性质的基础知识是重要的。然而,文学数据是稀缺的,高压条件下的实验是具有挑战性的。因此,在这项工作中在298.15k和318.15k和渗透浓度高达3mol / kg水的温度下测量新的渗透水溶液的新型高压密度数据。此外,最近应用了热力学模型PC-SAFT以成功地模拟水的蒸汽压力和高达10kbar的水密度[M. Knierbein等人。,千巴尔范围内TMAO解决方案的密度变化:实验,PC-SAFT预测和分子动力学模拟,生物物理化学,(2019)]。这允许精确地预测温度和Osmolyte浓度对热力学性质(特别是混合密度)的影响,直至非常高的压力。正在研究常见的渗透渗透剂(三甲胺-N-氧化物,尿素,酸甘油,甘油,甘油)以及乙酰基 - N-甲基甘氨酸,乙酰基-N-甲基丙氨酸酰胺和乙酰基-N-甲基氨酰胺。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号