首页> 外文期刊>Biotechnology Progress >An approach for the improved immobilization of penicillin G acylase onto macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) as a potential industrial biocatalyst
【24h】

An approach for the improved immobilization of penicillin G acylase onto macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) as a potential industrial biocatalyst

机译:一种改进青霉素G酰化酶对大孔聚(乙二酰甲基丙烯酸酯 - 共乙二醇二甲基丙烯酸乙二醇)作为潜在工业生物催化剂的方法

获取原文
获取原文并翻译 | 示例
           

摘要

The use of penicillin G acylase (PGA) covalently linked to insoluble carrier is expected to produce major advances in pharmaceutical processing industry and the enzyme stability enhancement is still a significant challenge. The objective of this study was to improve catalytic performance of the covalently immobilized PGA on a potential industrial carrier, macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) [poly(GMA-co-EGDMA)], by optimizing the copolymerization process and the enzyme attachment procedure. This synthetic copolymer could be a very promising alternative for the development of low-cost, easy-to-prepare, and stable biocatalyst compared to expensive commercially available epoxy carriers such as Eupergit or Sepabeads. The PGA immobilized on poly(GMA-co-EGDMA) in the shape of microbeads obtained by suspension copolymerization appeared to have higher activity yield compared to copolymerization in a cast. Optimal conditions for the immobilization of PGA on poly(GMA-co-EGDMA) microbeads were 1mg/mL of PGA in 0.75mol/L phosphate buffer pH 6.0 at 25 degrees C for 24h, leading to the active biocatalyst with the specific activity of 252.7U/g dry beads. Chemical amination of the immobilized PGA could contribute to the enhanced stability of the biocatalyst by inducing secondary interactions between the enzyme and the carrier, ensuring multipoint attachment. The best balance between the activity yield (51.5%), enzyme loading (25.6mg/g), and stability (stabilization factor 22.2) was achieved for the partially modified PGA. (c) 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:43-53, 2016
机译:预期使用青霉素G酰基酶(PGA)与不溶性载体共价连接的,在药物加工工业中产生主要进展,酶稳定性增强仍然是一个重大挑战。本研究的目的是通过优化共聚过程和优化共聚工业载体,大孔聚(甲基丙烯酸酯 - 共聚乙二醇二甲基二丙烯酸酯),改善共价固定的PGA的催化性能。酶附件程序。与昂贵的商业上可获得的环氧载体如Eupergit或Sepabeads相比,这种合成共聚物可能是一种非常有前途的替代方案,用于开发低成本,易于制备和稳定的生物催化剂。固定在通过悬浮共聚物获得的微珠形状的聚(GMA-Co-EGDMA)上固定的PGA,与铸造中的共聚相比具有更高的活性产率。 PGA对聚(GMA-Co-EPDMA)微珠固定的最佳条件为0.75mol / L磷酸盐缓冲液pH6.0的1mg / ml PGA,在25℃下为24小时,导致活性生物催化剂的特定活性为252.7 u / g干珠。通过诱导酶和载体之间的二次相互作用,固定化的PGA的化学胺化可以有助于增强生物催化剂的稳定性,确保多点附着。为部分改性的PGA实现活性产率(51.5%),酶负载(25.6mg / g)和稳定性(稳定因子22.2)之间的最佳平衡。 (c)2015美国化学工程研究所生物科技。 Prog。,32:43-53,2016

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号