...
首页> 外文期刊>Computers and Electronics in Agriculture >CFD analysis of greenhouse heating using flue gas and hot water heat sink pipe networks
【24h】

CFD analysis of greenhouse heating using flue gas and hot water heat sink pipe networks

机译:使用烟气和热水散热管网的温室加热CFD分析

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this study, CFD analysis has been conducted and compared with already developed heat transfer model (HTM) to predict the heating load generated by (i) flue gas heat sink pipe network (FGHSPN) handling flue gas at 350 degrees C and (ii) hot water heat sink pipe network (HWHSPN) receiving hot water at 65 degrees C for accurately computing the heating requirements in order to determine the effect of each system on the greenhouse temperature rise. The heat was generated using innovatively designed forced draft paddy straw bale combustor (FDPSBC) through combustion of paddy straw biomass bales in single operation of FDPSBC which was coupled with a 100 m(2) area greenhouse. The results of both CFD and HTM have been compared with the experimental results performed during winter night in Ludhiana city (30.56 degrees N latitude, India). The heat released through radiation and free convection was computed through two methods viz; an unstructured mesh with 509,153 elements was used for simulation using CFD. The simulation was 3D pressure-based, transient analysis with activated energy, laminar viscous and surface to surface radiation models without taking into account the effect of incident solar radiation. Simulated results show that the total heat transfer by radiation and convection mode was 8.70 kW and 4.68 kW (total 13.38 kW) respectively resulting in steady-state greenhouse temperature rise of 10.35 degrees C above the ambient air. The CFD simulated results match with heat transfer model results of 12.98 kW (RMSE of 1.5%) and also comparable with experimentally observed temperature profile inside the greenhouse with RMSE of 1% which show the utility of CFD to study greenhouse microclimatic parameters and predict the heating load requirements without using complicated heat transfer equations and mathematical solutions.
机译:在本研究中,已经进行了CFD分析并与已经开发的传热模型(HTM)进行了比较,以预测(i)烟气散热管网(FGHSPN)在350摄氏度下处理烟气的加热载荷(i)热水散热管网(HWHSPN)在65摄氏度接收热水,以精确计算加热要求,以便确定每个系统对温室温度升高的影响。通过在FDPSBC的单一操作中,使用创新设计的强制稻草包燃烧器(FDPSBC)产生了激进的稻草秸秆燃烧器(FDPSBC)。 CFD和HTM的结果与Ludhiana市冬季夜晚进行的实验结果进行了比较(30.56度,印度)。通过辐射和自由对流释放的热量通过两种方法来计算;使用CFD使用具有509,153个元件的非结构化网格进行仿真。该模拟是基于3D压力的,瞬态分析,具有活性能量,层状粘性和表面到表面辐射模型,而不考虑事件太阳辐射的效果。仿真结果表明,辐射和对流模式的总热传递分别为8.70千瓦,4.68千瓦(总为13.38千瓦),显着导致环境空气高于10.35摄氏度的稳态温室温度上升。 CFD模拟结果与传热模型的匹配导热模型为12.98千瓦(RMSE 1.5%),也可与实验观察到的温室内的温度曲线相当,具有1%的RMSE,显示CFD研究温室微跨界参数的效用并预测加热。负载要求而不使用复杂的传热方程和数学解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号