首页> 外文期刊>Acta biomaterialia >Towards multi-dynamic mechano-biological optimization of 3D-printed scaffolds to foster bone regeneration
【24h】

Towards multi-dynamic mechano-biological optimization of 3D-printed scaffolds to foster bone regeneration

机译:用于3D印刷支架的多动力机械 - 生物学优化,以培养骨再生

获取原文
获取原文并翻译 | 示例
           

摘要

Substantial tissue loss, such as in large bone defects, represents a clinical challenge for which regenerative therapies and tissue engineering strategies aim at offering treatment alternatives to conventional replacement approaches by metallic implants. 3D printing technologies provide endless opportunities to shape scaffold structures that could support endogenous regeneration. However, it remains unclear which of the numerous parameters at hand eventually enhance tissue regeneration. In the last decades, a significant effort has been made in the development of computer tools to optimize scaffold designs. Here, we aim at giving a more comprehensive overview summarizing current computer optimization framework technologies. We confront these with the most recent advances in scaffold mechano-biological optimization, discuss their limitations and provide suggestions for future development. We conclude that the field needs to move forward to not only optimize scaffolds to avoid implant failures but to improve their mechano-biological behaviour: providing an initial stimulus for fast tissue organisation and healing and accounting for remodelling, scaffold degradation and consecutive filling with host tissue. So far, modelling approaches fall short in including the various scales of tissue dynamics. With this review, we wish to stimulate a move towards multi-dynamic mechano-biological optimization of 3D-printed scaffolds.
机译:诸如大骨缺陷的大量组织损失是一种临床挑战,其临床挑战是​​通过金属植入物提供对常规替代方法的处理替代品的临床挑战。 3D印刷技术为塑造可支持内源再生的脚手架结构提供无穷的机会。然而,它仍然不清楚手头的许多参数最终增强组织再生。在过去的几十年中,已经在开发计算机工具方面取得了重大努力,以优化脚手架设计。在这里,我们的目标是提供更全面的概述总结当前的计算机优化框架技术。我们对脚手架机械 - 生物学优化的最新进步有所面临,讨论其局限性,并为未来发展提供建议。我们得出结论,该领域需要向前发展,不仅优化脚手架以避免植入失败,而是改善其机械生物学行为:为快速组织组织和愈合,支架降解和与宿主组织连续填充的初始刺激,提供初始刺激,支架降解和连续填充宿主组织。到目前为止,建模方法在包括组织动力学的各种尺度内部缺少。有了这篇综述,我们希望激发3D印刷脚手架的多动力机械 - 生物学优化的举动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号