首页> 外文期刊>Cytoskeleton >Actin filaments modulate electrical activity of brain microtubule protein two‐dimensional sheets
【24h】

Actin filaments modulate electrical activity of brain microtubule protein two‐dimensional sheets

机译:肌动蛋白细丝调节脑微管蛋白二维板的电活动

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract The cytoskeleton of eukaryotic cells contains networks of actin filaments and microtubules (MTs) that are jointly implicated in various cell functions, including cell division, morphogenesis, and migration. In neurons, this synergistic activity drives both the formation of axons during development and synaptic activity in mature neurons. Both actin filaments and MTs also are highly charged polyelectrolytes that generate and conduct electrical signals. However, no information is presently available on a potential electrical crosstalk between these two cytoskeletal networks. Herein we tested the effect of actin polymerization on the electrical oscillations generated by two‐dimensional sheets of bovine brain microtubule protein (2D‐MT). The voltage‐clamped 2D‐MT sheets displayed spontaneous electrical oscillations representing a synchronous 224% change in conductance, and a fundamental frequency of 38?Hz. At 60?mV, a 4.15 nC of integrated charge transferred per second increased by 72.3% (7.15 nC) after addition of monomeric (G)‐actin. This phenomenon had a 2‐min lag time, and was prevented by the presence of the G‐actin‐binding protein DNAse I. Addition of prepolymerized F‐actin, however, had a rapid onset (10 s) and a higher effect on the tubulin sheets (~100% increase, 8.25 nC). The data are consistent with an interaction between the actin cytoskeleton and tubulin structures, in what seems to be an electrostatic effect. Because actin filaments and MTs interact with each other in neurons, it is possible for this phenomenon to be present, and of relevance in the processing of intracellular signaling, including the gating and activation of actin cytoskeleton‐regulated excitable ion channels in neurons.
机译:摘要真核细胞的细胞骨架含有肌动蛋白细丝和微管(MTS)的网络,其共同涉及各种细胞功能,包括细胞分裂,形态发生和迁移。在神经元中,这种协同活性在成熟神经元的开发和突触活动期间驱动轴突的形成。肌动蛋白长丝和MTS也具有产生和传导电信号的高电荷的聚电解质。然而,目前在这两个细胞骨架网络之间的潜在电串扰上没有任何信息。在此,我们测试了肌动蛋白聚合对由二维牛脑微管蛋白(2D-MT)产生的电振荡的影响。电压夹紧的2D-MT片材显示出具有224%变化的自发电振荡,以及38Ω·赫兹的基频。在60℃下,加入单体(g)-Actin后,每秒转移的4.15nc的一体的集成电荷增加72.3%(7.15nc)。这种现象具有2分钟的滞后时间,并且通过存在G-肌动蛋白结合蛋白DNase I.添加预聚合的F-acc蛋白的添加具有快速发作(&10 s)和更高的效果在管蛋白片上(〜100%增加,8.25nc)。数据似乎是静电效应的致动蛋白细胞骨架和管蛋白结构之间的相互作用一致。因为肌动蛋白长丝和MTS在神经元中彼此相互作用,所以可以存在这种现象,并且在细胞内信号传导的处理中具有相关性,包括神经元中肌动蛋白细胞骨架调节的激发离子通道的门控和活化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号