首页> 外文期刊>Crystal growth & design >Crystal Engineering of L?Alanine with L?Leucine Additive using Metal- Assisted and Microwave-Accelerated Evaporative Crystallization
【24h】

Crystal Engineering of L?Alanine with L?Leucine Additive using Metal- Assisted and Microwave-Accelerated Evaporative Crystallization

机译:金属辅助和微波加速蒸发结晶法对含L?亮氨酸添加剂的L?丙氨酸进行晶体工程

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, we demonstrated that the change in the morphology of L-alanine crystals can be controlled with the addition of L-leucine using the metal-assisted and microwave accelerated evaporative crystallization (MAMAEC) technique. Crystallization experiments, where an increasing stoichiometric amount of L-leucine is added to initial L-alanine solutions, were carried out on circular poly(methyl methacrylate) (PMMA) disks modified with a 21-well capacity silicon isolator and silver nanoparticle films using microwave heating (MA-MAEC) and at room temperature (control experiments). The use of the MA-MAEC technique afforded for the growth of L-alanine crystals with different morphologies up to ~10-fold faster than those grown at room temperature. In addition, the length of L-alanine crystals was systematically increased from ~380 to ~2000 μm using the MA-MAEC technique. Optical microscope images revealed that the shape of L-alanine crystals was changed from tetragonal shape (without L-leucine additive) to more elongated and wire-like structures with the addition of the L-leucine additive. Further characterization of Lalanine crystals was undertaken by Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy and powder X-ray diffraction (PXRD) measurements. In order to elucidate the growth mechanism of L-alanine crystals, theoretical simulations of Lalanine’s morphology with and without L-leucine additive were carried out using Materials Studio software in conjunction with our experimental data. Theoretical simulations revealed that the growth of L-alanine’s {011} and {120} crystal faces were inhibited due to the incorporation of L-leucine into these crystal faces in selected positions.
机译:在这项工作中,我们证明了使用金属辅助和微波加速蒸发结晶(MAMAEC)技术,通过添加L-亮氨酸可以控制L-丙氨酸晶体的形态变化。使用微波通过21孔容量硅隔离器和银纳米颗粒膜改性的圆形聚(甲基丙烯酸甲酯)(PMMA)圆盘进行了结晶实验,在化学实验中将增加的化学计量的L-亮氨酸添加到初始L-丙氨酸溶液中。加热(MA-MAEC)和室温下(对照实验)。 MA-MAEC技术的使用为不同形态的L-丙氨酸晶体的生长提供了比室温下生长快约10倍的晶体。此外,使用MA-MAEC技术将L-丙氨酸晶体的长度从380微米增加到2000微米。光学显微镜图像显示,通过添加L-亮氨酸添加剂,L-丙氨酸晶体的形状从四边形(没有L-亮氨酸添加剂)改变为更细长的丝状结构。通过傅立叶变换红外(FT-IR)光谱,拉曼光谱和粉末X射线衍射(PXRD)测量对拉丙氨酸晶体进行了进一步表征。为了阐明L-丙氨酸晶体的生长机理,结合我们的实验数据,使用Materials Studio软件对有或没有L-亮氨酸添加剂的Lalanine形态进行了理论模拟。理论模拟表明,由于在选定位置将L-亮氨酸掺入这些晶面,因此抑制了L-丙氨酸的{011}和{120}晶面的生长。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号