首页> 外文期刊>Crystal growth & design >Control of Crystal Size Distribution using Non-Isothermal Taylor Vortex Flow
【24h】

Control of Crystal Size Distribution using Non-Isothermal Taylor Vortex Flow

机译:非等温泰勒涡流控制晶体尺寸分布

获取原文
获取原文并翻译 | 示例
           

摘要

Using a Couette-Taylor (CT) crystallizer, a non-isothermal technique was developed for effective control of the crystal size distribution (CSD) of the suspension. The proposed technique is based on the internal heating cooling cycle in a non-isothermal CT crystallizer, consisting of a hot cylinder (T-h) and cold cylinder (T-c). Thus, an internal loop of fines destruction of the suspension in the heating boundary layer of the hot cylinder and recrystallization in the cooling boundary layer of the cold cylinder is formed by the periodic circulating flow of the Taylor vortex in the non-isothermal CT crystallizer. The efficiency of the heating cooling cycle for improving the CSD depends on the non-isothermal mode and non-isothermal parameters. When the inner cylinder temperature is hot and the outer cylinder temperature is cold (Mode-I), this is more efficient for improving the mean crystal size and dispersity of the CSD than when the cylinder temperatures are reversed (Mode-II). In addition, the efficiency of the heating-cooling cycle is optimized using the temperature difference between hot and cold cylinders (Delta T = T-h - T-c) and saturated bulk temperature. The Taylor vortex fluid motion is always found to enhance the internal cycle efficiency. Thus, the initially small crystal size and broad CSD of the seed suspension (230 mu m of mean crystal size and 81% of coefficient of variation) are improved to a large crystal size and narrow CSD of the product suspension (1020 mu m of mean crystal size and 31% of coefficient of variation) at a non-isothermality of 8.7 +/- 0.1 degrees C, saturated bulk temperature of 24.0 degrees C, and rotation speed of 800 rpm. The variation of the cycle efficiency is explained in terms of the driving forces for heating dissolution and cooling recrystallization.
机译:使用Couette-Taylor(CT)结晶器,开发了一种非等温技术来有效控制悬浮液的晶体尺寸分布(CSD)。所提出的技术基于非等温CT结晶器中的内部加热冷却循环,该结晶器由热缸(T-h)和冷缸(T-c)组成。因此,通过非等温CT结晶器中泰勒涡旋的周期性循环流动,形成了内部循环,该内部循环精细地破坏了热筒的加热边界层中的悬浮液并且使冷筒的冷却边界层中的再结晶。用于改善CSD的加热冷却循环的效率取决于非等温模式和非等温参数。当内筒温度为高温而外筒温度为低温(模式I)时,与反转筒温时(模式II)相比,这对于改善CSD的平均晶体尺寸和分散度更为有效。此外,利用冷热缸之间的温度差(ΔT = T-h-T-c)和饱和整体温度来优化加热-冷却循环的效率。总是发现泰勒涡旋流体运动可以提高内部循环效率。因此,种子悬浮液的最初较小的晶体尺寸和较宽的CSD(平均晶体尺寸为230μm,变异系数为81%)被改善为较大的晶体尺寸和较窄的产品悬浮液CSD(平均为1020μm晶体尺寸和31%的变异系数)是在8.7 +/- 0.1摄氏度的非等温温度,24.0摄氏度的饱和体温和800 rpm的转速下进行的。通过加热溶解和冷却重结晶的驱动力来解释循环效率的变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号