...
首页> 外文期刊>Crystal growth & design >Direct Nanoscale Imaging Reveals the Growth of Calcite Crystals via Amorphous Nanoparticles
【24h】

Direct Nanoscale Imaging Reveals the Growth of Calcite Crystals via Amorphous Nanoparticles

机译:直接纳米成像通过无定形纳米粒子揭示了方解石晶体的生长

获取原文
获取原文并翻译 | 示例
           

摘要

The formation of calcite (CaCO3), the most abundant carbonate mineral on Earth and a common biomineral, has been the focus of numerous studies. While recent research underlines the importance of nonclassical crystallization pathways involving amorphous precursors, direct evidence is lacking regarding the actual mechanism of calcite growth via an amorphous phase. Here we show, using in situ atomic force microscopy and complementary techniques, that faceted calcite can grow via a nonclassical particle mediated colloidal crystal growth mechanism that at the nanoscale mirrors classical ion-mediated growth, and involves a layer-by-layer attachment of amorphous calcium carbonate (ACC) nanoparticles, followed by their restructuring and fusion with the calcite substrate in perfect crystallographic registry. The ACC-to-calcite transformation occurs by an interface-coupled dissolution-reprecipitation mechanism and obliterates or preserves the nanogranular texture of the colloidal growth layer in the absence or presence of organic (macro)molecules, respectively. These results show that, in addition to classical ion-mediated crystal growth, a particle-mediated growth mechanism involving colloidal epitaxy may operate in the case of an inorganic crystal such as calcite. The gained knowledge may shed light on the mechanism of CaCO3 biomineralization, and should open new ways for the rational design of novel biomimetic functional nanomaterials.
机译:方解石(CaCO3)是地球上最丰富的碳酸盐矿物,也是一种常见的生物矿物,其形成已成为众多研究的重点。尽管最近的研究强调了涉及非晶态前体的非经典结晶途径的重要性,但关于方解石通过非晶相生长的实际机理尚缺乏直接证据。在这里,我们显示,使用原位原子力显微镜和互补技术,可以通过非经典粒子介导的胶体晶体生长机制来生长多面方解石,该机制在纳米尺度上反映了经典的离子介导的生长,并且涉及无定形的逐层附着碳酸钙(ACC)纳米粒子,然后将其重组并与方解石基质融合,形成完美的晶体学配准。 ACC到方解石的转变是通过界面耦合的溶解-再沉淀机制发生的,并且在不存在或存在有机(大分子)分子的情况下,胶体生长层的纳米颗粒质地会消失或保持不变。这些结果表明,除了经典的离子介导的晶体生长之外,在诸如方解石的无机晶体的情况下,涉及胶体外延的颗粒介导的生长机制可能起作用。所获得的知识可能会阐明CaCO3生物矿化的机理,并应为合理设计新型仿生功能纳米材料开辟新途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号