...
首页> 外文期刊>ACS catalysis >Host-Guest Chemistry Meets Electrocatalysis: Cucurbit[6]uril on a Au Surface as a Hybrid System in CO2 Reduction
【24h】

Host-Guest Chemistry Meets Electrocatalysis: Cucurbit[6]uril on a Au Surface as a Hybrid System in CO2 Reduction

机译:宿主化学符合电催化:葫芦[6] UUIN在AU表面上作为CO2减少的混合系统

获取原文
获取原文并翻译 | 示例
           

摘要

The rational control of forming and stabilizing reaction intermediates to guide specific reaction pathways remains to be a major challenge in electrocatalysis. In this work, we report a surface active-site engineering approach for modulating electrocatalytic CO2 reduction using the macrocycle cucurbit[6]uril (CB[6]). A pristine gold surface functionalized with CB[6] nanocavities was studied as a hybrid organic inorganic model system that utilizes host-guest chemistry to influence the heterogeneous electrocatalytic reaction. The combination of surface-enhanced infrared absorption (SEIRA) spectroscopy and electrocatalytic experiments in conjunction with theoretical calculations supports capture and reduction of CO2 inside the hydrophobic cavity of CB[6] on the gold surface in aqueous KHCO3 at negative potentials. SEIRA spectroscopic experiments show that the decoration of gold with the supramolecular host CB[6] leads to an increased local CO2 concentration close to the metal interface. Electrocatalytic CO2 reduction on a CB[6]-coated gold electrode indicates differences in the specific interactions between CO2 reduction intermediates within and outside the CB[6] molecular cavity, illustrated by a decrease in current density from CO generation, but almost invariant H-2 production compared to unfunctionalized gold. The presented methodology and mechanistic insight can guide future design of molecularly engineered catalytic environments through interfacial host-guest chemistry.
机译:形成和稳定反应中间体以指导特异性反应途径的合理控制仍然是电殖分析中的主要挑战。在这项工作中,我们报告了使用宏细胞葫芦(CB [6])调节电催化二氧化碳还原的表面有效现场工程方法。研究了用Cb [6]纳米盖官能化的原始金表面作为杂种有机无机模型系统,利用宿主 - 客体化学来影响异质电催化反应。结合理论计算的表面增强的红外吸收(Seira)光谱和电催化实验的组合支持在阴性电位的金色表面上Cb [6]的Cb [6]的疏水腔内的CO 2捕获和还原。 Seira光谱实验表明,用超分子宿主Cb [6]的金的装饰导致靠近金属界面的局部CO 2浓度增加。 Cb的电催化二氧化碳减少[6] - 涂覆的金电极表明CB [6]分子腔内和外部的CO 2还原中间体之间的特定相互作用的差异,通过来自CO的电流密度的降低,但几乎不变的H- 2生产与未稳定的金相比。呈现的方法和机械洞察力通过界面宿主化学,可以引导未来的分子工程催化环境设计。

著录项

  • 来源
    《ACS catalysis》 |2020年第1期|共11页
  • 作者单位

    Univ Cambridge Dept Chem Christian Doppler Lab Sustainable SynGas Chem Lensfield Rd Cambridge CB2 1EW England;

    Univ Cambridge Dept Chem Christian Doppler Lab Sustainable SynGas Chem Lensfield Rd Cambridge CB2 1EW England;

    Univ Cambridge Dept Chem Christian Doppler Lab Sustainable SynGas Chem Lensfield Rd Cambridge CB2 1EW England;

    Kings Coll London Dept Chem 7 Trinity St London SE1 1DB England;

    Kings Coll London Dept Chem 7 Trinity St London SE1 1DB England;

    Jacobs Univ Bremen Dept Life Sci &

    Chem Campus Ring 1 D-28759 Bremen Germany;

    Univ Cambridge Dept Chem Melville Lab Polymer Synth Lensfield Rd Cambridge CB2 1EW England;

    Univ Cambridge Dept Chem Melville Lab Polymer Synth Lensfield Rd Cambridge CB2 1EW England;

    Univ Cambridge Cavendish Lab Dept Phys JJ Thomson Ave Cambridge CB3 0HE England;

    Univ Cambridge Dept Chem Christian Doppler Lab Sustainable SynGas Chem Lensfield Rd Cambridge CB2 1EW England;

    Univ Cambridge Dept Chem Christian Doppler Lab Sustainable SynGas Chem Lensfield Rd Cambridge CB2 1EW England;

    Kings Coll London Dept Chem 7 Trinity St London SE1 1DB England;

    Tech Univ Berlin Inst Chem Max Volmer Lab Biophys Chem Sekr PC14 Str 17 Juni 135 D-10623 Berlin Germany;

    Jacobs Univ Bremen Dept Life Sci &

    Chem Campus Ring 1 D-28759 Bremen Germany;

    Univ Cambridge Dept Chem Melville Lab Polymer Synth Lensfield Rd Cambridge CB2 1EW England;

    Univ Cambridge Dept Chem Christian Doppler Lab Sustainable SynGas Chem Lensfield Rd Cambridge CB2 1EW England;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

    surface active-site engineering; electrocatalytic CO2 reduction; host-guest chemistry; supramolecular catalysis;

    机译:表面活性网站工程;电催化二氧化碳减少;宿主 - 客人化学;超分子催化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号