首页> 外文期刊>Atmospheric chemistry and physics >Turbulent structure and scaling of the inertial subrange in a stratocumulus-topped boundary layer observed by a Doppler lidar
【24h】

Turbulent structure and scaling of the inertial subrange in a stratocumulus-topped boundary layer observed by a Doppler lidar

机译:多普勒利达观察到的狭窄边界层中的湍流结构和惯性子分子的缩放

获取原文
获取原文并翻译 | 示例
           

摘要

The turbulent structure of a stratocumulus-topped marine boundary layer over a 2-day period is observed with a Doppler lidar at Mace Head in Ireland. Using profiles of vertical velocity statistics, the bulk of the mixing is identified as cloud driven. This is supported by the pertinent feature of negative vertical velocity skewness in the sub-cloud layer which extends, on occasion, almost to the surface. Both coupled and decoupled turbulence characteristics are observed. The length and timescales related to the cloud-driven mixing are investigated and shown to provide additional information about the structure and the source of the mixing inside the boundary layer. They are also shown to place constraints on the length of the sampling periods used to derive products, such as the turbulent dissipation rate, from lidar measurements. For this, the maximum wavelengths that belong to the inertial subrange are studied through spectral analysis of the vertical velocity. The maximum wavelength of the inertial subrange in the cloud-driven layer scales relatively well with the corresponding layer depth during pronounced decoupled structure identified from the vertical velocity skewness. However, on many occasions, combining the analysis of the inertial subrange and vertical velocity statistics suggests higher decoupling height than expected from the skewness profiles. Our results show that investigation of the length scales related to the inertial subrange significantly complements the analysis of the vertical velocity statistics and enables a more confident interpretation of complex boundary layer structures using measurements from a Doppler lidar.
机译:在爱尔兰的术术头部的多普勒·莱达观察到2天的汹涌的海洋边界层的湍流结构。使用垂直速度统计的配置文件,大部分混合被识别为云驱动。这是由亚云层中的负垂直速度偏斜的相关特征支持,偶尔几乎延伸到表面。观察到耦合和去耦湍流特性。研究了与云驱动混合相关的长度和时间尺度,并示出提供有关边界层内部结构和混合源的附加信息。它们也被证明可以将限制放置在用于从LIDAR测量中导出产品的采样周期的长度,例如湍流耗散速率。为此,通过垂直速度的光谱分析研究了属于惯性子区域的最大波长。在从垂直速度偏斜的明显解耦结构期间,云驱动层中的惯性子区域的最大波长尺度相对较好地缩放。然而,在很多场合,组合惯性子区域和垂直速度统计的分析表明比偏斜轮廓的预期更高的去耦高度。我们的研究结果表明,与惯性子范围相关的长度尺度的调查显着补充了垂直速度统计的分析,并使使用多普勒利达的测量值更自信地解释复杂的边界层结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号