首页> 外文期刊>International journal of computational methods >Fluid-Solid Interaction Analysis on Iliac Bifurcation Artery: A Numerical Study
【24h】

Fluid-Solid Interaction Analysis on Iliac Bifurcation Artery: A Numerical Study

机译:髂分叉动脉液固体相互作用分析:数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

Atherosclerosis, which is commonly seen at regions with low wall shear stress (WSS) level in bifurcations, is a kind of fibro-fatty plaque accumulated on arterial walls. Aortic and iliac bifurcations have the highest proportion of patients among all atherosclerosis cases, thus it is necessary to numerically analyze the flow distribution and predict plaque positions in these bifurcations. Furthermore, using fluid-solid interaction (FSI) method could obtain a more exact flow pattern in arteries. In this study, a patient-specific model of aortic and iliac bifurcations was simulated with both FSI and rigid-wall cases. We analyzed the vessel deformation, WSS and flow distribution of this model. Computed tomography (CT) angiography was used in our study to create patient-specific model of aorto-iliac arteries. Real material properties and pulsatile fluid boundary conditions were applied in solid and fluid zones, respectively. We performed FSI and ordinary computational fluid dynamics (CFD) simulations with AYSYS 15.0 software (ANSYS Inc., Canonsburg, PA), and compared the diameter change, WSS and flow field between these two results. The diameter change between systolic phase and diastolic phase is 8-9% on abdominal aorta, and 3% on external and internal iliac arteries. The compliance of vessels corresponds to in-vivo observations. At peak systolic phase, the average WSS obtained in FSI simulation is 10% lower than in rigid-wall result, area of low-WSS region (WSS <= 0.5Pa) also increases by 78%. Wall deformation has a greater impact on WSS of those vessels with larger diameter, but hardly changes the shear level in smaller branches. Our result also shows that iliac bifurcations reveal more complicated secondary flow in systolic phase, comparing to other vessels, and stenosed iliac artery has more severe secondary flow than healthy artery. We obtained a feasible method for hemodynamic FSI research. The material parameters, boundary conditions and mesh could be used for further simulations, while the WSS and flow distribution may support clinical diagnosis and treatment. We concluded that compliance is a must-consider factor for simulating an accurate wall shear stress, because the vessel deformation in FSI simulation will significantly change the distribution of low-WSS zones. Moreover, more complicated secondary flow is detected in iliac arteries because it may interact between bifurcations. Stenosis in artery may also have a blocking effect on downstream blood flow.
机译:在分叉壁剪切应力(WSS)水平低的区域中常见的动脉粥样硬化是一种在动脉壁上积聚的一种纤维脂肪斑块。主动脉和髂分叉具有最高比例的患者在所有动脉粥样硬化病例中,因此有必要在数值上分析这些分叉中的流量分布和预测斑块位置。此外,使用流体固体相互作用(FSI)方法可以在动脉中获得更精确的流动模式。在该研究中,用FSI和刚性壁壳模拟了主动脉和髂分叉分叉的患者特异性模型。我们分析了该模型的血管变形,WSS和流量分布。在我们的研究中使用了计算机断层扫描(CT)血管造影,以产生主轴动脉的患者特异性模型。实际物质和脉动流体边界条件分别施加在固体和流体区域。我们使用Aysys 15.0软件(Ansys Inc.,Canonsburg,PA)进行了FSI和普通计算流体动力学(CFD)模拟,并将其与这两个结果之间的直径变化,WSS和流场进行比较。收缩相和舒张相之间的直径变化为腹部主动脉8-9%,外部和内部髂动脉均有3%。血管的顺应性对应于体内观察。在峰值收缩阶段,在FSI模拟中获得的平均WSS比刚性壁结果低10%,低WSS区域(WSS <= 0.5Pa)面积也增加了78%。墙壁变形对那些直径较大的血管的WSS产生了更大的影响,但几乎没有改变较小分支中的剪切水平。我们的结果还表明,髂分叉在收缩相中揭示了更复杂的二次流动,与其他血管相比,令人抑制的髂动脉比健康的动脉更严重的二次流动。我们获得了一种可行的血液动力学FSI研究方法。材料参数,边界条件和网格可用于进一步模拟,而WSS和流量分布可以支持临床诊断和治疗。我们得出结论,遵守是一种模拟精确墙剪应力的必须考虑的因素,因为FSI仿真中的血管变形将显着改变低WSS区域的分布。此外,在髂动脉中检测到更复杂的二次流程,因为它可以在分叉之间相互作用。动脉狭窄也可能对下游血流具有阻塞效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号