...
首页> 外文期刊>Advanced Science Letters >Dynamical Models of Terrestrial Planet Formation
【24h】

Dynamical Models of Terrestrial Planet Formation

机译:陆地行星形成的动力学模型

获取原文
获取原文并翻译 | 示例
           

摘要

We review the problem of the formation of terrestrial planets, with particular emphasis on the interaction of dynamical and geochemical models. The lifetime of gas around stars in the process of formation is limited to a few million years based on astronomical observations, while isotopic dating of meteorites and the Earth-Moon system suggest that perhaps 50-100 million years were required for the assembly of the Earth. Therefore, much of the growth of the terrestrial planets in our own system is presumed to have taken place under largely gas-free conditions, and the physics of terrestrial planet formation is dominated by gravitational interactions and collisions. The earliest phase of terrestrial-planet formation involve the growth of km-sized or larger planetesimals from dust grains, followed by the accumulations of these planetesimals into ~100 lunar- to Mars-mass bodies that are initially gravitationally isolated from one-another in a swarm of smaller planetesimals, but eventually grow to the point of significantly perturbing one-another. The mutual perturbations between the embryos, combined with gravitational stirring by Jupiter, lead to orbital crossings and collisions that drive the growth to Earth-sized planets on a timescale of 10~7-10~8 years. Numerical treatment of this process has focussed on the use of symplectic integrators which can rapidly integrate the thousands of gravitationally-interacting bodies necessary to accurately model planetary growth. While the general nature of the terrestrial planets-their sizes and orbital parameters-seem to be broadly reproduced by the models, there are still some outstanding dynamical issues. One of these is the presence of an embryo-sized body, Mars, in our system in place of the more massive objects that simulations tend to yield. Another is the effect such impacts have on the geochemistry of the growing planets; re-equilibration of isotopic ratios of major elements during giant impacts (for example) must be considered in comparing the predicted compositions of the terrestrial planets with the geochemical data. As the dynamical models become successful in reproducing the essential aspects of our own terrestrial planet system, their utility in predicting the distribution of terrestrial planet systems around other stars, and interpreting observations of such systems, will increase.
机译:我们回顾了地球行星形成的问题,特别着重于动力学和地球化学模型的相互作用。根据天文观测,形成过程中恒星周围气体的寿命被限制在几百万年之内,而陨石和地球-月亮系统的同位素测年表明,地球的组装可能需要50-100亿年。 。因此,我们系统中的地球行星的大部分增长被认为是在很大程度上无气体的条件下发生的,而地球行星形成的物理学则主要受到引力相互作用和碰撞的影响。地行星形成的最早阶段涉及从尘埃颗粒中生长出数千米或更大的小行星,然后将这些小行星堆积成约100个月球至火星质量的物体,这些物体最初在重力作用下彼此相互隔离。一群较小的小行星,但最终发展到明显干扰彼此的地步。胚胎之间的相互扰动,再加上木星的引力搅动,导致了轨道交叉和碰撞,从而在10〜7-10〜8年的时间尺度上将其驱动为地球大小的行星。该过程的数值处理集中在使用辛积分器上,辛积分器可以快速地积分成千上万个对行星生长进行精确建模所必需的重力相互作用体。虽然陆地行星的一般性质(它们的大小和轨道参数)似乎可以由模型广泛复制,但仍然存在一些突出的动力学问题。其中之一是我们系统中存在一个像火星一样大小的物体,它代替了模拟可能产生的更重的物体。另一个是这种影响对生长中行星的地球化学的影响。在比较预计的地球行星组成与地球化学数据时,必须考虑在巨大撞击(例如)期间主要元素的同位素比重新平衡。随着动力学模型成功地复制了我们自己的地球行星系统的基本方面,它们在预测其他行星周围的地球行星系统的分布以及解释此类系统的观测结果方面的效用将会增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号