首页> 外文期刊>International Journal of Pressure Vessels and Piping >FSI-simulation of ductile fracture propagation and arrest in pipelines: Comparison with existing data of full-scale burst tests
【24h】

FSI-simulation of ductile fracture propagation and arrest in pipelines: Comparison with existing data of full-scale burst tests

机译:延性骨折传播与管道逮捕的FSI模拟:与全规模突发测试现有数据的比较

获取原文
获取原文并翻译 | 示例
           

摘要

The fracture propagation and arrest control for pipelines transporting rich natural gases and high vapor pressure liquids is based on the Battelle Two-Curve Model (BTCM). Distinct limitations of this model were demonstrated for past and modern steels and gas mixtures. These can be related to the insufficient description of individual physical processes and interactions between the pipe material and transported mixture during the running ductile fracture. In the past, fluid-structure interaction (FSI) models enabled a more sophisticated, coupled analysis of the failure scenario. To quantify their capability of describing the multi-physical processes, the FSI models need to be verified by experimental data from full-scale burst tests (FSBT). Therefore, this paper deals with the simulation of five FSBTs from the literature on API grade X65 pipes with different pipe geometries, mixtures and initial conditions. The FSI is modeled by the coupled Euler-Lagrange (CEL) method. The modified Mohr-Coulomb (MMC) model is implemented in the CEL framework to describe the deformation and ductile fracture in the X65/L450 pipes. 3D Euler equations are used to calculate the mixture decompression with the GERG-2008 equation of state defining the volumetric behavior of a CO2-rich mixture, CH4 and H-2. The extended model considers the effect of soil backfill on the pipe deformation and inertia. The numerical predictions agree well with the experimental findings in terms of the crack propagation speed and arrest length underlining the capability of the developed numerical tool.
机译:输送富天然气和高蒸汽压力液体的管道的断裂繁殖和阻止控制基于Battelle双曲线模型(BTCM)。过去和现代钢和气体混合物证明了该模型的独特局限性。这些可以与单个物理过程的描述和管材之间的相互作用和在运行的延展性骨折期间与输送混合物之间有关。在过去,流体结构相互作用(FSI)模型使得对失败场景的更复杂,耦合分析。为了量化其描述多物理过程的能力,需要通过来自全规模突发测试(FSBT)的实验数据来验证FSI模型。因此,本文涉及用不同管几何,混合物和初始条件的API级X65管道上的文献中的五个FSBT。 FSI由耦合的Euler-Lagrange(CEL)方法进行建模。修改的MoHR-Coulomb(MMC)模型在CEL框架中实施,以描述X65 / L450管中的变形和延展性裂缝。 3D euler方程用于计算与GERG-2008状态的混合物减压,该状态的状态分别定义CO 2的混合物,CH4和H-2的体积行为。扩展模型考虑了土壤回填对管道变形和惯性的影响。在裂纹传播速度和延迟长度下调开发的数值工具的能力方面,数值预测与实验结果很好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号