首页> 外文期刊>Earth Surface Processes and Landforms: The journal of the British Geomorphological Research Group >Patterns and drivers of peat topographic changes determined from Structure-from-Motion photogrammetry at field plot and laboratory scales
【24h】

Patterns and drivers of peat topographic changes determined from Structure-from-Motion photogrammetry at field plot and laboratory scales

机译:泥炭地形变化的模式和驱动器从场图和实验室尺度的结构 - 从运动摄影测量中确定

获取原文
获取原文并翻译 | 示例
           

摘要

Little is known about the spatial and temporal variability of peat erosion nor some of its topographic and weather-related drivers. We present field and laboratory observations of peat erosion using Structure-from-Motion (SfM) photogrammetry. Over a 12 month period, 11 repeated SfM surveys were conducted on four geomorphological sites of 18-28 m(2) (peat hagg, gully wall, riparian area and gully head) in a blanket peatland in northern England. A net topographic change of -14 to +30 mm yr(-1) for the four sites was observed during the whole monitoring period. Cold conditions in the winter of 2016 resulted in highly variable volume change (net surface topographic rise first and lowering afterwards) via freeze-thaw processes. Long periods of dry conditions in the summer of 2017 led to desiccation and drying and cracking of the peat surface and a corresponding surface lowering. Topographic changes were mainly observed over short-term intervals when intense rainfall, flow wash, needle-ice production or surface desiccation was observed. In the laboratory, we applied rainfall simulations on peat blocks and compared the peat losses quantified by traditional sediment flux measurements with SfM derived topographic data. The magnitude of topographic change determined by SfM (mean value: 0.7 mm, SD: 4.3 mm) was very different to the areal average determined by the sediment yield from the blocks (mean value: -0.1 mm, SD: 0.1 mm). Topographic controls on spatial patterns of topographic change were illustrated from both field and laboratory surveys. Roughness was positively correlated to positive topographic change and was negatively correlated to negative topographic change at field plot scale and laboratory macroscale. Overall, the importance of event-scale change and the direct relationship between surface roughness and the rate of topographic change are important characteristics which we suggest are generalizable to other environments. (c) 2018 John Wiley & Sons, Ltd.
机译:众所周知,泥炭侵蚀的空间和时间变异性也不是其地形和与天气有关的驱动因素。我们使用结构 - 从运动(SFM)摄影测量的泥炭侵蚀的现场和实验室观察。在12个月内,11个重复的SFM调查是在18-28米(2)(泥炭Hagg,Gully墙,河岸地区和沟壑)的四个地貌遗址上进行的,在英格兰北部的毯子泥土中进行。在整个监测期间,观察到四个地点的-14至+30mm YR(-1)的净地形变化。 2016年冬季的寒冷条件导致高度变量变化(首先净地形上升,然后以后降低)。 2017年夏季长期干燥的干燥条件导致泥炭表面的干燥和干燥和裂缝和相应的表面降低。在观察到剧烈降雨,流水清洗,针冰产物或表面干燥时,主要观察到地形变化。在实验室中,我们在泥炭块上施加了降雨模拟,并将传统沉积物通量测量的泥炭损耗与SFM导出的地形数据进行了比较。由SFM确定的地形变化的大小(平均值:0.7mm,SD:4.3mm)与来自嵌段(平均值:-0.1mm,SD:0.1mm)确定的由沉积物产量决定的区域平均值不同。从地面和实验室调查说明了地形变化的空间模式的地形控制。粗糙度与正地形变化呈正相关,并且与场绘图规模和实验室宏观尺度的阴性地形变化负相关。总体而言,事件规模变化的重要性和表面粗糙度与地形变化率之间的直接关系是我们建议的重要特征,这是概遍的其他环境。 (c)2018 John Wiley&Sons,Ltd。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号