...
首页> 外文期刊>Experimental Brain Research >Control of force during rapid visuomotor force-matching tasks can be described by discrete time PID control algorithms
【24h】

Control of force during rapid visuomotor force-matching tasks can be described by discrete time PID control algorithms

机译:可以通过离散时间PID控制算法来描述快速求解机构力匹配任务期间的力控制

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Force trajectories during isometric force-matching tasks involving isometric contractions vary substantially across individuals. In this study, we investigated if this variability can be explained by discrete time proportional, integral, derivative (PID) control algorithms with varying model parameters. To this end, we analyzed the pinch force trajectories of 24 subjects performing two rapid force-matching tasks with visual feedback. Both tasks involved isometric contractions to a target force of 10% maximal voluntary contraction. One task involved a single action (pinch) and the other required a double action (concurrent pinch and wrist extension). 50,000 force trajectories were simulated with a computational neuromuscular model whose input was determined by a PID controller with different PID gains and frequencies at which the controller adjusted muscle commands. The goal was to find the best match between each experimental force trajectory and all simulated trajectories. It was possible to identify one realization of the PID controller that matched the experimental force produced during each task for most subjects (average index of similarity: 0.87 +/- A 0.12; 1 = perfect similarity). The similarities for both tasks were significantly greater than that would be expected by chance (single action: p = 0.01; double action: p = 0.04). Furthermore, the identified control frequencies in the simulated PID controller with the greatest similarities decreased as task difficulty increased (single action: 4.0 +/- A 1.8 Hz; double action: 3.1 +/- A 1.3 Hz). Overall, the results indicate that discrete time PID controllers are realistic models for the neural control of force in rapid force-matching tasks involving isometric contractions.
机译:在等距匹配任务期间的力轨迹涉及等距收缩的特性大幅度变化。在本研究中,我们研究了这种可变性,可以通过具有不同模型参数的离散时间比例,积分,衍生(PID)控制算法来解释。为此,我们分析了24个主题的夹紧力轨迹,其具有视觉反馈的两个快速力量匹配任务。这两个任务都涉及等距收缩到最大自愿收缩的10%的目标力。一个任务涉及一个动作(捏),另一个任务需要一个双重动作(并发夹紧和手腕扩展)。用计算神经肌肉模型模拟了50,000个力轨迹,其输入由PID控制器确定具有不同PID增益和控制器调整肌肉命令的频率的PID控制器。目标是在每个实验力轨迹和所有模拟轨迹之间找到最佳匹配。可以识别PID控制器的一个实现,该控制器匹配大多数受试者期间每项任务期间产生的实验力(平均相似指数:0.87 +/- 0.12; 1 =完美的相似性)。两个任务的相似性明显大于偶然预期的大大(单一动作:P = 0.01;双重作用:P = 0.04)。此外,随着任务难度的增加(单一动作:4.0 +/- 1.8Hz;双重动作:3.1 +/- 1.3Hz),模拟PID控制器中所识别的控制频率随着最大的相似之处而下降总的来说,结果表明,离散时间PID控制器是涉及等距收缩的快速力匹配任务的神经控制的现实模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号