首页> 外文期刊>Nanoscale and microscale thermophysical engineering >Enhanced Pool Boiling Performance of Microchannel Patterned Surface with Extremely Low Wall Superheat through Capillary Feeding of Liquid
【24h】

Enhanced Pool Boiling Performance of Microchannel Patterned Surface with Extremely Low Wall Superheat through Capillary Feeding of Liquid

机译:增强微通道图案化表面的池沸腾性能,通过极低的壁过热通过毛细管进给液体

获取原文
获取原文并翻译 | 示例
           

摘要

The pool boiling performance plays a key role in the development of high heat flux dissipating applications. The high critical heat flux and low wall superheat are two of the critical factors that affect the long-term life of devices. In this paper, enhanced pool boiling performance can be achieved by well-designed microchannels in copper surfaces using a precision diamond dicing method. The microchannel patterned surface with the channel length of 0.4 mm obtains a critical heat flux of 169.8 W/cm(2), which has a 193% enhancement compared to the plain surface. Besides, the extremely low wall superheat of 3 K has been achieved, and thus the heat transfer coefficient reaches 51.8 W/cm(2).K, about 738% larger than that of the plain surface. Herein, the microcavity has increased the nucleation site, the surface can promote the bubbles escape, and then the channel can continuously supply the liquid. Hence, the extremely low wall superheat at high heat flux occurs due to the rapid bubble departure and enhanced capillary feeding of liquid replenishment to active nucleation sites on the surface. The above results provide an effective way for the realization of high-performance two-phase microchannel patterned heat sinks via optimizing the microstructure geometry.
机译:池沸腾的性能在高热量通量耗散应用方面发挥着关键作用。高临界热通量和低壁过热是影响器件长期寿命的两个关键因素。在本文中,通过使用精密金刚石切割方法,可以通过铜表面精心设计的微通道实现增强的池沸腾性能。具有0.4mm的通道长度的微通道图案化表面获得169.8W / cm(2)的临界热通量,与平原表面相比具有193%的增强。此外,已经实现了3 k的极低壁过热,因此传热系数达到51.8W / cm(2).K,大约比平原表面大的738%。这里,微腔已经增加了成核位点,表面可以促使气泡逸出,然后通道可以连续供应液体。因此,由于快速泡沫脱离和增强的液体补充到表面上的活性成核位点,因此出现了高热通量的极低壁过热。上述结果提供了通过优化微结构几何形状来实现高性能两相微通道图案散热器的有效方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号