...
首页> 外文期刊>Structural Chemistry >Contributions of IQA electron correlation in understanding the chemical bond and non-covalent interactions
【24h】

Contributions of IQA electron correlation in understanding the chemical bond and non-covalent interactions

机译:IQA电子相关在了解化学键和非共价相互作用中的贡献

获取原文
获取原文并翻译 | 示例
           

摘要

The quantum topological energy partitioning method Interacting Quantum Atoms (IQA) has been applied for over a decade resulting in an enlightening analysis of a variety of systems. In the last three years we have enriched this analysis by incorporating into IQA the two-particle density matrix obtained from Moller-Plesset (MP) perturbation theory. This work led to a new computational and interpretational tool to generate atomistic electron correlation and thus topologically based dispersion energies. Such an analysis determines the effects of electron correlation within atoms and between atoms, which covers both bonded and non-bonded "through -space" atom-atom interactions within a molecule or molecular complex. A series of papers published by us and other groups shows that the behavior of electron correlation is deeply ingrained in structural chemistry. Some concepts that were shown to be connected to bond correlation are bond order, multiplicity, aromaticity, and hydrogen bonding. Moreover, the concepts of covalency and ionicity were shown not to be mutually excluding but to both contribute to the stability of polar bonds. The correlation energy is considerably easier to predict by machine learning (kriging) than other IQA terms. Regarding the nature of the hydrogen bond, correlation energy presents itself in an almost contradicting way: there is much localized correlation energy in a hydrogen bond system, but its overall effect is null due to internal cancelation. Furthermore, the QTAIM delocalization index has a connection with correlation energy. We also explore the role of electron correlation in protobranching, which provides an explanation for the extra stabilization present in branched alkanes compared to their linear counterparts. We hope to show the importance of understanding the true nature of the correlation energy as the foundation of a modern representation of dispersion forces for ab initio, DFT, and force field calculations.
机译:量子拓扑能量分配方法在多年来上施加了相互作用量子原子(IQA),从而产生了各种系统的启示分析。在过去的三年中,我们通过将来自Moller-Plesset(MP)扰动理论获得的双粒子密度矩阵掺入IQA来富集了该分析。这项工作导致了一种新的计算和解释工具来产生原子的电子相关性,因此是基于拓扑基于的色散能量。这种分析决定了原子内电子相关和原子之间的影响,其覆盖分子或分子复合物内的粘合和非键合的“通过 - 空间”原子 - 原子相互作用。美国和其他群体出版的一系列论文表明,电子相关性在结构化学中深入。显示连接到粘合相关的一些概念是键序,多重性,芳香性和氢键。此外,示出了共价和离子性的概念,不包括相互排除,但两者都有助于极性键的稳定性。通过机器学习(Kriging)比其他IQA术语相当容易预测相关能量。关于氢键的性质,相关能量以几乎相矛盾的方式呈现出来:氢键系统中存在大量的局部相关能量,但由于内部取消,其整体效果是零的。此外,QTAIM临床化指数与相关能量有关。我们还探讨了电子关系在植物中的作用,其与其线性对应物相比,对支链烷烃中存在的额外稳定化提供了解释。我们希望了解与AB初始,DFT和力场计算的现代分散力的现代表现的基础,以了解相关能量的真实性质的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号