首页> 外文期刊>Biotechnology Progress >Synchronized Mammalian Cell Culture: Part I-A Physical Strategy for Synchronized Cultivation Under Physiological Conditions
【24h】

Synchronized Mammalian Cell Culture: Part I-A Physical Strategy for Synchronized Cultivation Under Physiological Conditions

机译:同步哺乳动物细胞培养:第一部分-在生理条件下同步培养的物理策略

获取原文
获取原文并翻译 | 示例
           

摘要

Conventional analysis and optimization procedures of mammalian cell culture processes mostly treat the culture as a homogeneous population. Hence, the focus is on cell physiology and metabolism, cell line development, and process control strategy. Impact on cultivations caused by potential variations in cellular properties between different subpopulations, however, has not yet been evaluated systematically. One main cause for the formation of such subpopulations is the progress of all cells through the cell cycle. The interaction of potential cell cycle specific variations in the cell behavior with large-scale process conditions can be optimally determined by means of (partially) synchronized cultivations, with subsequent population resolved model analysis. Therefore, it is desirable to synchronize a culture with minimal perturbation, which is possible with different yield and quality using physical selection methods, but not with frequently used chemical or whole-culture methods. Conventional nonsynchronizing methods with subsequent cell-specific, for example, flow cytometric analysis, can only resolve cell-limited effects of the cell cycle. In this work, we demonstrate countercurrent-flow centrifugal elutriation as a useful physical method to enrich mammalian cell populations within different phases of a cell cycle, which can be further cultivated for synchronized growth in bioreactors under physiological conditions. The presented combined approach contrasts with other physical selection methods especially with respect to the achievable yield, which makes it suitable for bioreactor scale cultivations. As shown with two industrial cell lines (CHO-K1 and human AGE1.HN), synchronous inocula can be obtained with overall synchrony degrees of up to 82% in the G1 phase, 53% in the S phase and 60% in the G2/M phase, with enrichment factors ( Ysync) of 1.71, 1.79, and 4.24 respectively. Cells are able to grow with synchrony in bioreactors over several cell cycles. This strategy, combined with population-resolved model analysis and parameter extraction as described in the accompanying paper, offers new possibilities for studies of cell lines and processes at levels of cell cycle and population under physiological conditions. (c) 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:165-174, 2015
机译:哺乳动物细胞培养过程的常规分析和优化程序大多将培养物视为同质种群。因此,重点是细胞生理和代谢,细胞系发育和过程控制策略。但是,尚未系统地评估由不同亚群之间细胞特性的潜在变化引起的对栽培的影响。形成这种亚群的主要原因之一是所有细胞在整个细胞周期中的进程。可以通过(部分)同步培养以及随后的种群解析模型分析,以最佳方式确定细胞行为与大规模过程条件之间潜在的细胞周期特定变化之间的相互作用。因此,希望以最小的扰动使培养物同步,这可以使用物理选择方法以不同的产量和质量进行同步,而不是经常使用的化学或全培养方法。常规的非同步方法及其后的特定于细胞的方法(例如流式细胞仪分析)只能解决细胞周期对细胞的限制作用。在这项工作中,我们证明了逆流离心淘析技术是一种有用的物理方法,可以富集细胞周期不同阶段内的哺乳动物细胞群,可以进一步培养该生物体以便在生理条件下在生物反应器中同步生长。提出的组合方法与其他物理选择方法形成对比,尤其是在可实现的产量方面,这使其适合于生物反应器规模的种植。如两个工业细胞系(CHO-K1和人AGE1.HN)所示,可以获得同步接种,其总同步度在G1期最高达到82%,在S期达到53%,在G2 /期达到60% M相,富集因子(Ysync)分别为1.71、1.79和4.24。在多个细胞周期中,细胞能够在生物反应器中同步生长。该策略与所附论文中所述的群体解析模型分析和参数提取相结合,为研究在生理条件下细胞周期和种群水平下的细胞系和过程提供了新的可能性。 (c)2014美国化学工程师学会生物技术学会。 Prog。,31:165-174,2015

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号