...
首页> 外文期刊>Journal of Biomolecular Structure and Dynamics >In silico and in vivo stability analysis of a heterologous biosynthetic pathway for 1,4-butanediol production in metabolically engineered E-coli
【24h】

In silico and in vivo stability analysis of a heterologous biosynthetic pathway for 1,4-butanediol production in metabolically engineered E-coli

机译:在硅和体内稳定性分析在代谢工程的E-COLI中的1,4-丁二醇产量的异源生物合成途径

获取原文
获取原文并翻译 | 示例
           

摘要

Recently, several approaches have been published in order to develop a functional biosynthesis route for the non-natural compound 1,4-butanediol (BDO) in E. coli using glucose as a sole carbon source or starting from xylose. Among these studies, there was reported as high as 18g/L product concentration achieved by industrial strains, however BDO production varies greatly in case of the reviewed studies. Our motivation was to build a simple heterologous pathway for this compound in E. coli and to design an appropriate cellular chassis based on a systemic biology approach, using constraint-based flux balance analysis and bi-level optimization for gene knock-out prediction. Thus, the present study reports, at the proof-of concept level, our findings related to model-driven development of a metabolically engineered E. coli strain lacking key genes for ethanol, lactate and formate production (pflB, ldhA and adhE), with a three-step biosynthetic pathway. We found this strain to produce a limited quantity of 1,4-BDO (.89mg/L BDO under microaerobic conditions and .82mg/L under anaerobic conditions). Using glycerol as carbon source, an approach, which to our knowledge has not been tackled before, our results suggest that further metabolic optimization is needed (gene-introductions or knock-outs, promoter fine-tuning) to address the redox potential imbalance problem and to achieve development of an industrially sustainable strain. Our experimental data on culture conditions, growth dynamics and fermentation parameters can consist a base for ongoing research on gene expression profiles and genetic stability of such metabolically engineered E. coli strains.
机译:最近,已经公布了几种方法,以便使用葡萄糖作为唯一碳源或从木糖开始的大肠杆菌中的非天然化合物1,4-丁二醇(BDO)的功能性生物合成途径。在这些研究中,据报道,由于工业菌株实现的18g / L产品浓度,但是在审查的研究时,BDO产量很大。我们的动机是在大肠杆菌中为该化合物构建一个简单的异源途径,并根据系统生物学方法设计适当的细胞底盘,使用基于约束的助焊剂平衡分析和基因敲除预测的BI级优化。因此,目前的研究报告,在概念验证水平上,我们的发现与模型驱动的开发的代谢工程化的大肠杆菌菌株缺乏乙醇的关键基因,乳酸和甲酸生产(PFLB,LDHA和ADHE),有三步生物合成途径。我们发现该菌株在厌氧条件下产生有限的1,4-BDO(如.89mg / L BDO,在厌氧条件下.82mg / L)。使用甘油作为碳源,之前尚未解决我们知识的方法,我们的结果表明,需要进一步的代谢优化(基因引入或淘汰,启动子微调)来解决氧化还原潜在的不平衡问题实现工业上可持续菌株的发展。我们对培养条件,生长动力学和发酵参数的实验数据可以包括持续研究基因表达谱和这种代谢工程化大肠杆菌菌株的遗传稳定性的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号