...
首页> 外文期刊>Journal of Computational Physics >A high-order accurate scheme for Maxwell's equations with a Generalized Dispersive Material (GDM) model and material interfaces
【24h】

A high-order accurate scheme for Maxwell's equations with a Generalized Dispersive Material (GDM) model and material interfaces

机译:具有广义分散材料(GDM)模型和材料接口的Maxwell方程的高阶准确方案

获取原文
获取原文并翻译 | 示例
           

摘要

A high-order accurate scheme for solving the time-domain dispersive Maxwell's equations and material interfaces is described. Maxwell's equations are solved in second-order form for the electric field. A generalized dispersive material (GDM) model is used to represent a general class of linear dispersive materials and this model is implemented in the time-domain with the auxiliary differential equation (ADE) approach. The interior updates use our recently developed second-order and fourth-order accurate single-stage three-level space-time finite-difference schemes, and this paper extends these schemes to treat interfaces between different dispersive materials. Composite overlapping grids are used to treat complex geometry, with Cartesian grids generally covering most of the domain and local conforming grids representing curved boundaries and interfaces. Compatibility conditions derived from the interface jump conditions and governing equations are used to derive accurate numerical interface conditions that define values at ghost points. Although some compatibility conditions couple the equations for the ghost points in tangential directions due to mixed-derivatives, it is shown how to decouple the equations to avoid solving a larger system of equations for all ghost points on the interface. The stability of the interface approximations is studied with mode analysis and it is shown that the schemes retain close to a CFL-onetime-step restriction. Numerical results are presented in two and three space dimensions to confirm the accuracy and stability of the schemes. The schemes are verified using exact solutions for a planar interface, a disk in two dimensions, and a solid sphere in three dimensions. (C) 2020 Elsevier Inc. All rights reserved.
机译:描述了一种用于解决时域分散麦克斯韦方程和材料接口的高阶准确方案。 Maxwell的等式以电场的二阶形式解决。广义分散材料(GDM)模型用于表示一般的线性分散材料,并且该模型在具有辅助微分方程(ADE)方法的时域中实现。内部更新使用我们最近开发的二阶和四阶精确的单级三级时空有限差分方案,并且本文扩展了这些方案来处理不同分散材料之间的接口。复合重叠网格用于处理复杂的几何形状,用笛卡尔网格覆盖大多数域和代表曲线边界和接口的本地符合网格。从接口跳转条件和管理方程导出的兼容性条件用于导出定义幽灵点的值的准确数字接口条件。尽管一些兼容性条件由于混合衍生物而对切向方向的鬼波点的方程耦合,但是示出了如何解耦方程以避免求解界面上所有幽灵点的更大的方程系统。利用模式分析研究了界面近似的稳定性,并显示了该方案保留接近CFL-OneTime步骤限制。数值结果呈现在两个和三个空间尺寸中,以确认方案的准确性和稳定性。使用平面接口的精确解决方案,两个尺寸的磁盘以及三维的固体球,验证这些方案。 (c)2020 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号