...
首页> 外文期刊>Journal of Computational Physics >Accelerated Computation of Relative Permeability by Coupled Morphological and Direct Multiphase Flow Simulation
【24h】

Accelerated Computation of Relative Permeability by Coupled Morphological and Direct Multiphase Flow Simulation

机译:通过耦合形态和直接多相流动模拟加速计算相对渗透性的计算

获取原文
获取原文并翻译 | 示例
           

摘要

Computation of two-phase flow in porous media with low capillary numbers is challenging due to slow convergence and the presence of spurious currents at the phase interfaces that are greater than the viscous flow. The relative permeability of such systems is a critical parameter for upscaling flow properties but requires steady state flow configurations at low capillary numbers; a computationally slow problem to calculate. By using a morphologically coupled multiphase Lattice Boltzmann Method (LBM), it is observed that phase distributions converge an order of magnitude faster (1,000-50,000 timesteps) than flow fields (250,000-350,000 timesteps) during capillary dominated regimes. The proposed method couples a quasi-static, morphological method with direct LBM simulation that combines the efficiency of morphological calculations with the accuracy of direct simulation. The system fluid distribution is initialised morphologically instead of using simulated forced primary drainage to reduce dynamic simulation time and remove saturation end effects. The approach preconditions the simulation towards steady state conditions and the LBM routine relaxes the phase distributions until phases are stable. The steady state velocity fields are obtained by solving for flow in each stable connected phase distribution with a fast Semi Analytical Laplace solver to overcome spurious currents. A morphological Shell Aggregation method is then applied, condensing the displacing phase as a shell over pre-existing phase distributions and allowed to again reach phase equilibrium. Results obtained from the simulations are consistent with experimental relative permeability curves and phase morphology obtained from Gildehauser sandstone. This method allows rapid computation of phase distributions and relative permeability for capillary dominated flows. Shell Aggregation typically reaches steady state within 50,000-150,000 LBM timesteps opposed to 250,000-350,000 by spinodal decomposition for the tested 500 cubed Bentheimer sandstone and 150 cubed sand pack samples. Solving for flow in each connected phase body after Shell Aggregation LBM reaches steady state is furthermore shown to require down to 1,000-10,000 LBM timesteps at the expense of some interfacial physics. (C) 2019 Elsevier Inc. All rights reserved.
机译:由于慢的收敛性和大于粘性流动的相界面,具有低毛细数量的多孔介质中的两相流的计算是具有挑战性的。这种系统的相对渗透性是用于升高流动性能的关键参数,但需要在低毛细数字下稳态流动配置;计算速度的计算速度。通过使用形态学耦合的多相晶格Boltzmann方法(LBM),观察到相位分布在毛细管主导制度期间比流场(250,000-350,000个时间步)更快(1,000-50,000个时间步)级(1,000-50,000个时间步)。所提出的方法致耦合具有直接LBM模拟的准静态形态学方法,其与直接模拟的准确性结合了形态学计算的效率。系统流体分布在形态学上初始化而不是使用模拟的强制初级排水,以减少动态仿真时间并去除饱和结束效果。该方法预处理模拟稳定状态条件,LBM常规放松相位分布,直到阶段稳定。通过用快速半分析拉普拉斯求解器求解每个稳定的连接相位分布中的流动来获得稳态速度场,以克服杂散的电流。然后施加形态壳聚集方法,将移位阶段冷凝作为预先存在的相位分布的壳,并再次达到相平衡。从模拟获得的结果与从吉尔邦砂岩获得的实验相对渗透性曲线和相位形态一致。该方法允许快速计算毛细管主导流的相位分布和相对渗透性。壳体聚集通常在50,000-150,000 LBM的时间内达到稳定状态,而通过Spinodal分解对测试的500立方体Bentheimer砂岩和150立方砂包样品的旋转探测器分解而导致250,000-350,000。在壳聚集LBM达到稳定状态之后,求解每个连接的相体内的流动进一步显示,以牺牲某些界面物理学的费用下降到1,000-10,000 LBM的时间。 (c)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号