首页> 外文期刊>Journal of Low Power Electronics >Static Power Analysis and Estimation in Ternary Content Addressable Memory Cells
【24h】

Static Power Analysis and Estimation in Ternary Content Addressable Memory Cells

机译:三元内容可寻址存储器单元中的静态功率分析和估计

获取原文
获取原文并翻译 | 示例
           

摘要

Ternary CAM (Content Addressable Memory) circuits are predominantly used in current generation network routers and switches. Fast IP (Internet Protocol) data transfer requirements have lead to the increase in usage of TCAM cells for bit-searches. To improve the speed of the CMOS circuits, transistors are being scaled down to nanoscale regime. At such small geometries transistors dissipate significant leakage power in static mode. Consequentially the leakage power consumed by these circuits is an emerging design constraint. In this paper, we analyze the static leakage power components in a TCAM cell and explore four different implementations of the TCAM cell to identify the best model. Each of the TCAM cell designs was prototyped in MAGIC and the parasitics were extracted to perform the SPICE simulations (for 65 nm and 45 nm). We analyze the different components that are contributors to the leakage current in a TCAM cell and propose an ad-hoc approach to estimate the overall leakage current in the TCAM. The results using the ad-hoc approach are within a variance of 3.2%-7.3% of the expected norm. The TCAM cells using NOR compare circuitry proved to consume less static leakage current than the NAND based circuits. The Hybrid NAND-NOR match line (ML) TCAM proved the most leakage efficient of the four cells. We also implemented a combination of high and low threshold voltage devices in each of the TCAM models. Using high threshold voltage devices as access transistors and low threshold voltage devices as drive transistors curbed the leakage current.
机译:三元凸轮(内容可寻址存储器)电路主要用于当前生成的网络路由器和交换机。快速IP(Internet协议)数据传输要求导致TCAM小区的使用增加了比特搜索。为了提高CMOS电路的速度,晶体管被缩小到纳米级制度。在这样的小几何形状晶体管以静态模式耗散显着的漏电。因此,这些电路消耗的泄漏功率是新兴的设计约束。在本文中,我们分析了TCAM单元中的静电漏功率分量,并探索了TCAM单元的四种不同实现,以识别最佳模型。每个TCAM细胞设计在魔术中被造型,并提取寄生菌素以进行Spice模拟(65nm和45nm)。我们分析了TCAM细胞中漏电流的贡献者的不同组件,并提出了一种临时方法来估计TCAM中的总漏电流。使用ad-hoc方法的结果在预期标准的差异为3.2%-7.3%。使用或比较电路的TCAM电池证明了比基于NAND电路的静态泄漏电流少。混合NAND-NOR匹配线(ML)TCAM证明了四个细胞最漏的效率。我们还在每个TCAM模型中实现了高阈值电压器件的组合。使用高阈值电压器件作为访问晶体管和低阈值电压装置,因为驱动晶体管遏制漏电流。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号