...
首页> 外文期刊>Journal of Materials Chemistry, C. materials for optical and electronic devices >The difference in electronic structure of MAPI and MASI perovskites and its effect on the interface alignment to the HTMs spiro-MeOTAD and CuI
【24h】

The difference in electronic structure of MAPI and MASI perovskites and its effect on the interface alignment to the HTMs spiro-MeOTAD and CuI

机译:MAPI和MASI PEROVSKITE的电子结构的差异及其对HTMS SPIRO-MEOTAD和CUI的界面对齐的影响

获取原文
获取原文并翻译 | 示例
           

摘要

We have studied the electronic structure of CH3NH3PbI3 (MAPI) and CH3NH3SnI3 (MASI) perovskite films by performing X-ray photoelectron spectroscopy (XPS) measurements on in situ grown perovskite films. For the MASI perovskite we observed a 0.7 eV lower ionization potential (IP) as compared to MAPI. Thus, the band edges of MASI are positioned energetically higher with respect to MAPI. In addition, we found MASI to form p-type and MAPI n-type doping. To investigate the impact of different electronic structures on the line up to hole transport materials (HTMs) we performed detailed interface experiments using two commonly used HTMs: spiro-MeOTAD and CuI. The HTMs were step-by-step deposited onto in situ prepared MAPI and MASI layers and characterized via XPS and ultraviolet photoelectron spectroscopy (UPS) after each deposition step. Our results show that the lower IP of MASI results in blocking barriers at the spiro-MeOTAD interface as well as at the CuI contact. We also propose an estimated band alignment of the two perovskites to the TiO2 front contact by using the vacuum level as the reference energy. The higher lying conduction band maximum (CBM) of MASI as compared to MAPI would limit the open-circuit voltage (V-OC) of a solar cell. Furthermore, for a doped spiro-MeOTAD layer, a V-OC value of up to 750 mV is expected at the MAPI|doped spiro-MeOTAD interface, while it is limited to 210 mV in the case of MASI. Our results show that MASI specific HTMs and ETMs have to be found in order to improve the efficiency of MASI based solar cells.
机译:通过在原位生长的钙钛矿薄膜上进行X射线光电子谱(XPS)测量,研究了CH3NH3PBI3(MAPI)和CH3NH3SNI3(MASI)钙钛矿膜的电子结构。对于Masi Perovskite,与MAPI相比,我们观察到0.7eV降低电离电位(IP)。因此,对于MAPI,MASI的带状边缘能量高得多。此外,我们发现Masi形成p型和Mapi n型掺杂。为了研究不同电子结构对孔输送材料(HTMS)的影响,我们使用两个常用的HTMS和CUI进行了详细的界面实验。 HTMS是逐步沉积在原位制备的MAPI和MASI层上,并在每个沉积步骤后通过XPS和紫外线光电子光谱(UPS)。我们的研究结果表明,MASI的较低IP导致螺旋Meotad界面以及CUI接触的阻挡障碍。我们还提出了通过使用真空水平作为参考能量的TiO2前触点的估计对准。与MAPI相比,MASI的较高躺线导带最大(CBM)将限制太阳能电池的开路电压(V-OC)。此外,对于掺杂的螺肌腱层,在Mapi |掺杂螺旋 - Meotad界面上预期高达750 mV的V-OC值,而在MASI的情况下,它限制在210mV。我们的结果表明,必须找到MASI特定的HTMS和ETM,以提高基于MASI的太阳能电池的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号