首页> 外文期刊>Journal of Materials Engineering and Performance >A Metallurgical Investigation of the Direct Energy Deposition Surface Repair of Ferrous Alloys
【24h】

A Metallurgical Investigation of the Direct Energy Deposition Surface Repair of Ferrous Alloys

机译:黑色金属合金直接能沉积表面修复的冶金研究

获取原文
获取原文并翻译 | 示例
       

摘要

Among additive manufacturing (AM) processes, the direct energy deposition (DED) by laser is explored to establish its applicability for the repair of ferrous alloys such as UNS G41400 low-alloy steel, UNS S41000 martensitic stainless steel, UNS S17400 precipitation-strengthened martensitic stainless steel, and UNS S32750 super-duplex stainless steel. Unlike plating, thermal spray, and conventional cladding weld, DED laser powder deposition offers potential advantages, e.g., thin deposits, limited dilutions, narrow heat-affected zones (HAZ), potentially improved surface properties. In this investigation, all AM deposits were completed with an IREPA CLAD (TM) system using a powder feed of UNS N06625, an alloy largely selected for its outstanding corrosion resistance. This investigation first addresses topological aspects of AM deposits (including visual imperfections) before focusing on changes in microstructure, microhardness, chemical composition across AM deposits and base materials. It has been established that dense, uniform, hard (similar to 300 HVN), crack-free UNS N06625-compliant AM deposits of fine dendritic microstructures are reliably produced. However, except for the UNS S32750 steel, a significant martensitic hardening was observed in the HAZs of UNS G41400 (similar to 650 HVN), UNS S41000 (similar to 500 HVN), and UNS S17400 (similar to 370 HVN). In summary, this investigation demonstrates that the DED laser repair of ferrous parts with UNS N06625 may restore damaged surfaces, but it also calls for cautions and complementary investigations for alloys experiencing a high HAZ hardening, for which industry standard recommendations are exceeded and lead to an increased risk of delayed cracking in corrosive environments.
机译:在加性制造(AM)工艺中,探讨了激光直接能量沉积(DED),以确定其适用于维修的黑色合金,如UNS G41400低合金钢,未S41000马氏体不锈钢,UNS S17400沉淀 - 加强的马氏体不锈钢和UNS S32750超双工不锈钢。与电镀,热喷涂和传统的包层焊接不同,DED激光粉末沉积提供潜在的优势,例如薄沉积物,有限的稀释液,窄的热影响区域(HAZ),可能改善的表面性质。在该研究中,所有AM沉积物都是用IREPA包层(TM)系统完成的,使用UNS NO6625的粉末进料,该粉末进料,该粉末饲料很大程度上选择了其出色的耐腐蚀性。本研究首先解决了AM沉积物(包括视觉缺陷)的拓扑方面,然后重点关注沉积物和基础材料的微观结构,微硬度,化学成分的变化。已经确定,可靠地制备了致密,均匀,硬(类似于300 HVN),兼容无裂缝Unt N06625兼容的AM沉积的细树枝状微观结构。然而,除了UNS S32750钢外,在UNS G41400(类似于650 HVN)的HAZ中观察到显着的马氏体硬化,UNS S41000(类似于500 HVN),而UNS S17400(类似于370 HVN)。总之,本研究表明,具有UNS NO6625的铁件的DED激光修复可以恢复损坏的表面,但它还要求对经历高HAZ硬化的合金进行注意事项和互补调查,其中超出了行业标准建议并导致了腐蚀环境中延迟开裂的风险增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号