...
【24h】

Protein-surfactant interactions: a tale of many states.

机译:蛋白质-表面活性剂的相互作用:许多国家的故事。

获取原文
获取原文并翻译 | 示例
           

摘要

The scientific study of protein surfactant interactions goes back more than a century, and has been put to practical uses in everything from the estimation of protein molecular weights to efficient washing powder enzymes and products for personal hygiene. After a burst of activity in the late 1960s and early 1970s that established the general principles of how charged surfactants bind to and denature proteins, the field has kept a relatively low profile until the last decade. Within this period there has been a maturation of techniques for more accurate and sophisticated analyses of protein-surfactant complexes such as calorimetry and small angle scattering techniques. In this review I provide an overview of different useful approaches to study these complexes and identify eight different issues which define central concepts in the field. (1) Are proteins denatured by monomeric surfactant molecules, micelles or both? (2) How does unfolding of proteins in surfactant compare with "proper" unfolding in chemical denaturants? Recent work has highlighted the role of shared micelles, rather than monomers, below the critical micelle concentration (cmc) in promoting both protein denaturation and formation of higher order structures. Kinetic studies have extended the experimentally accessible range of surfactant concentrations to far above the cmc, revealing numerous different modes of denaturation by ionic surfactants below and above the cmc which reflect micellar properties as much as protein unfolding pathways. Uncharged surfactants follow a completely different denaturation strategy involving synergy between monomers and micelles. The high affinity of charged surfactants for proteins means that unfolding pathways are generally different in surfactants versus chemical denaturants, although there are common traits. Other issues are as follows: (3) Are there non-denaturing roles for SDS? (4) How reversible is unfolding in SDS? (5) How do solvent conditions affect the way in which surfactants denature proteins? The last three issues compare SDS with "proper" membranes. (6) Do anionic surfactants such as SDS mimic biological membranes? (7) How do mixed micelles interact with globular proteins? (8) How can mixed micelles be used to measure the stability of membrane proteins? The growing efforts to understand the unique features of membrane proteins have encouraged the development of mixed micelles to study the equilibria and kinetics of this class of proteins, and traits which unite globular and membrane proteins have also emerged. These issues emphasise the amazing power of surfactants to both extend the protein conformational landscape and at the same time provide convenient and reversible short-cuts between the native and denatured state for otherwise obdurate membrane proteins.
机译:蛋白质表面活性剂相互作用的科学研究可以追溯到一个多世纪之前,并且已经在从蛋白质分子量的估算到有效的洗衣粉酶和个人卫生产品的各种应用中得到了实际应用。在1960年代末和1970年代初爆发了一系列活动之后,该领域确立了带电表面活性剂如何与蛋白质结合并使蛋白质变性的一般原理,该领域一直保持相对低调,直到最近十年。在此期间,已经出现了用于蛋白质表面活性剂复合物的更准确和复杂分析的技术,例如量热法和小角度散射技术。在这篇综述中,我概述了研究这些复合物的不同有用方法,并指出了八个不同的问题,这些问题定义了该领域的核心概念。 (1)蛋白质是否被单体表面活性剂分子,胶束或两者变性? (2)与化学变性剂中的“适当”展开相比,表面活性剂中蛋白质的展开如何?最近的工作强调了低于临界胶束浓度(cmc)的共享胶束而不是单体在促进蛋白质变性和形成更高阶结构中的作用。动力学研究已将表面活性剂浓度的实验可及范围扩展至远高于cmc的范围,揭示了cmc之上和之下的离子型表面活性剂进行变性的多种不同方式,这些方式反映了胶束特性以及蛋白质解链途径。不带电荷的表面活性剂遵循完全不同的变性策略,涉及单体和胶束之间的协同作用。带电表面活性剂对蛋白质的高亲和力意味着,尽管具有共同的特征,但表面活性剂与化学变性剂的展开途径通常不同。其他问题如下:(3)SDS是否具有非变性角色? (4)SDS中的可逆性如何? (5)溶剂条件如何影响表面活性剂使蛋白质变性的方式?最后三个问题将SDS与“适当的”膜进行了比较。 (6)SDS等阴离子表面活性剂是否模仿生物膜? (7)混合胶束如何与球状蛋白相互作用? (8)混合胶束如何用于测量膜蛋白的稳定性?越来越多的了解膜蛋白独特特征的努力促进了混合胶束的发展,以研究此类蛋白的平衡和动力学,并且还出现了将球状和膜蛋白结合在一起的性状。这些问题强调了表面活性剂的强大功能,既可以扩展蛋白质构象图景,又可以在天然状态和变性状态之间提供便利且可逆的捷径,以免膜蛋白质过硬。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号