...
首页> 外文期刊>Biochemistry >Electron Transfer of Site-Specifically Cross-Linked Complexes between Ferredoxin and Ferredoxin-NADP(+) Reductase
【24h】

Electron Transfer of Site-Specifically Cross-Linked Complexes between Ferredoxin and Ferredoxin-NADP(+) Reductase

机译:基地的电子转移 - 特异性交联配合物在富勒莫汀和福兰辛-NADP(+)还原酶之间

获取原文
获取原文并翻译 | 示例
           

摘要

Ferredoxin (Fd) and Fd-NADP(+) reductase (FNR) are redox partners responsible for the conversion between NADP(+) and NADPH in the plastids of photosynthetic organisms. Introduction of specific disulfide bonds between Fd and FNR by engineering cysteines into the two proteins resulted in 13 different Fd-FNR cross-linked complexes displaying a broad range of activity to catalyze the NADPH-dependent cytochrome c reduction. This variability in activity was thought to be mainly due to different levels of intramolecular electron transfer activity between the FNR and Fd domains. Stopped-flow analysis revealed such differences in the rate of electron transfer from the FNR to Fd domains in some of the cross-linked complexes. A group of the cross-linked complexes with high cytochrome c reduction activity comparable to dissociable wild-type Fd/FNR was shown to assume a similar Fd-FNR interaction mode as in the native Fd: FNR complex by analyses of NMR chemical shift perturbation and absorption spectroscopy. However, the intermolecular electron transfer of these cross-linked complexes with two Fd-binding proteins, nitrite reductasc and photosystem I, was largely inhibited, most probably due to steric hindrance by the FNR moiety linked near the redox center of the Fd domain. In contrast, another group of the cross-linked complexes with low cytochrome c reduction activity tends to mediate higher intermolecular electron transfer activity. Therefore, reciprocal relationship of intramolecular and intermolecular electron transfer abilities was conferred by the linkage of Fd and FNR, which may explain the physiological significance of the separate forms of Fd and FNR in chloroplasts.
机译:Ferriedoxin(FD)和FD-NADP(+)还原酶(FNR)是氧化还原伴侣,其负责在光合生物的塑料中的NADP(+)和NADPH之间转化。通过将FD和FnR之间的特异性二硫键引入两种蛋白质中的FD和FNR之间的特定二硫键导致13种不同的FD-FNR交联复合物,显示出广泛的活性以催化NADPH依赖性细胞色素C还原。活性的这种可变性被认为是FNR和FD结构域之间的分子内电子转移活动的不同水平。停止流动分析揭示了在一些交联复合物中从FNR到FD结构域的电子转移率的这种差异。具有与可离子野生型FD / FNR可相当的具有高细胞色素C还原活性的交联复合物的一组交联复合物,其通过分析NMR化学换档扰动和NMR复合物在天然FD:FNR复合物中呈现类似的FD-FNR相互作用模式。吸收光谱。然而,这些交联复合物的分子结合与两个FD结合蛋白质,亚硝酸盐雷塔葡萄质和照相I的分子电子传递大大抑制,大部分可能是由于FD结构域的氧化还原中心附近连接的FNR部分的空间障碍。相反,具有低细胞色素C还原活性的另一组交联复合物倾向于介导更高的分子间电子转移活性。因此,通过FD和FNR的联系赋予了分子内和分子间电子转移能力的互核关系,这可以解释叶绿体中单独形式的FD和FNR的生理意义。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号